期刊文献+

STABILITY AND BIFURCATION ANALYSIS OF A PREDATOR-PREY MODEL WITH CROWLEY-MARTIN TYPE FUNCTIONAL RESPONSE AND TIME DELAY 被引量:1

STABILITY AND BIFURCATION ANALYSIS OF A PREDATOR-PREY MODEL WITH CROWLEY-MARTIN TYPE FUNCTIONAL RESPONSE AND TIME DELAY
原文传递
导出
摘要 In this paper,a class of predator-prey model with Crowley-Martin type functional response and time delay is considered.By choosing the delay as a bifurcation parameter,it is shown that Hopf bifurcation occurs as the delay passes through a certain critical value.Some numerical simulations for verifying the main results are also provided. In this paper,a class of predator-prey model with Crowley-Martin type functional response and time delay is considered.By choosing the delay as a bifurcation parameter,it is shown that Hopf bifurcation occurs as the delay passes through a certain critical value.Some numerical simulations for verifying the main results are also provided.
出处 《Annals of Differential Equations》 2012年第4期404-411,共8页 微分方程年刊(英文版)
关键词 predator-prey model Crowley-Martin time delay STABILITY Hopf bifurcation predator-prey model Crowley-Martin time delay stability Hopf bifurcation
  • 相关文献

参考文献11

  • 1John B. Collings.Bifurcation and stability analysis of a temperature-dependent mite predator-prey interaction model incorporating a prey refuge[J].Bulletin of Mathematical Biology.1995(1) 被引量:1
  • 2Y.L. Song,S.L. Yuan,J. Zhang.Bifurcation analysis in the delayed Leslie-Gower predator-prey system[].Applied Mathematical Modelling.2009 被引量:1
  • 3Nindjin A.F,Aziz-Alaoui M.A,Cadivel M.Analysis of a predator-prey model withmodifed Leslie-Gower and Holling-type II schemes with time delay[].NonlinearAnalysis: Real World Applications.2006 被引量:1
  • 4Upadhyay,R.K,Naji,R.K.Dynamics of a three species food chain model with Crowley-Martin type functional response[].Chaos Solitons Fractals.2009 被引量:1
  • 5Dieudonné,J. Foundations of Modern Analysis . 1960 被引量:1
  • 6S.B. Hsu,T.W. Huang.Hopf bifurcation analysis for a predator–prey system of Holling and leslie type[].Taiwan Residents Journal of Mathematics.1999 被引量:1
  • 7Leslie P.H,GowerJ.C.The Properties of a Stochastic Model for the Predator-Prey Type of Interaction Between Two Species[].Biometrika.1960 被引量:1
  • 8May R M.Stability and Complexity in Model Ecosystems[]..1973 被引量:1
  • 9Hale JK,Verduyn Lunel SM.Introduction to Functional Differential Equations[].Journal of Applied Mathematics.1993 被引量:1
  • 10Hsu S B,Huang T W.Global stability for a class of predator-prey systems[].SIAM Journal on Applied Mathematics.1995 被引量:1

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部