期刊文献+

PERMANENCE OF AN IMPULSIVE PREDATOR-PREY SYSTEM WITH MUTUAL INTERFERENCE AND CROWLEY-MARTIN RESPONSE FUNCTION

PERMANENCE OF AN IMPULSIVE PREDATOR-PREY SYSTEM WITH MUTUAL INTERFERENCE AND CROWLEY-MARTIN RESPONSE FUNCTION
原文传递
导出
摘要 In this paper, we investigated an impulsive predator-prey model with mu- tual interference and Crowley-Martin response function. By the comparison theorem and the analysis technique of [12,14], sufficient conditions for the per-manence of the impulsive model are obtained, which generalizes one of main results of [4]. In this paper, we investigated an impulsive predator-prey model with mu- tual interference and Crowley-Martin response function. By the comparison theorem and the analysis technique of [12,14], sufficient conditions for the per-manence of the impulsive model are obtained, which generalizes one of main results of [4].
作者 Qiaoxia Lin
出处 《Annals of Applied Mathematics》 2017年第4期379-390,共12页 应用数学年刊(英文版)
基金 supported by the Natural Science Foundation of Fujian Province(2015J01012,2015J01019,2015J05006) the Scientific Research Foundation of Fuzhou University(XRC-1438)
关键词 PREDATOR-PREY mutual interference Crowley-Martin impul- sive PERMANENCE predator-prey mutual interference Crowley-Martin impul- sive permanence
  • 相关文献

参考文献2

二级参考文献12

  • 1冯春华,刘永建,葛渭高.时滞Lotka-Volterra竞争型系统的概周期解[J].应用数学学报,2005,28(3):458-465. 被引量:14
  • 2John B. Collings.Bifurcation and stability analysis of a temperature-dependent mite predator-prey interaction model incorporating a prey refuge[J].Bulletin of Mathematical Biology.1995(1) 被引量:1
  • 3Y.L. Song,S.L. Yuan,J. Zhang.Bifurcation analysis in the delayed Leslie-Gower predator-prey system[].Applied Mathematical Modelling.2009 被引量:1
  • 4Nindjin A.F,Aziz-Alaoui M.A,Cadivel M.Analysis of a predator-prey model withmodifed Leslie-Gower and Holling-type II schemes with time delay[].NonlinearAnalysis: Real World Applications.2006 被引量:1
  • 5Upadhyay,R.K,Naji,R.K.Dynamics of a three species food chain model with Crowley-Martin type functional response[].Chaos Solitons Fractals.2009 被引量:1
  • 6Dieudonné,J. Foundations of Modern Analysis . 1960 被引量:1
  • 7S.B. Hsu,T.W. Huang.Hopf bifurcation analysis for a predator–prey system of Holling and leslie type[].Taiwan Residents Journal of Mathematics.1999 被引量:1
  • 8Leslie P.H,GowerJ.C.The Properties of a Stochastic Model for the Predator-Prey Type of Interaction Between Two Species[].Biometrika.1960 被引量:1
  • 9May R M.Stability and Complexity in Model Ecosystems[]..1973 被引量:1
  • 10Hale JK,Verduyn Lunel SM.Introduction to Functional Differential Equations[].Journal of Applied Mathematics.1993 被引量:1

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部