期刊文献+

一类带交叉扩散项的捕食模型正解的存在性 被引量:4

The existence of the positive solutions for a class of the prey-predator model with cross-diffusion
下载PDF
导出
摘要 研究了一类具有扩散和交叉扩散的Holling-Tanner捕食-食饵生态模型的正解.交叉扩散项的生物意义是食饵者通过自身保护的方式抵制来自捕食者的侵害.利用最大值原理和Harnack不等式给出了此模型正解的先验估计.进一步利用积分性质讨论了非常数正解的不存在性,相应地证明了当扩散系数d1、d2大于特定正常数,且交叉扩散系数d3有界时,此模型没有非常数正解.利用度理论讨论了非常数正解的存在性,从而得出若此模型的线性化算子正特征值的代数重数是奇数,且交叉扩散系数d3不小于给定正常数时,此模型至少存在一个非常数正解. The positive solutions are discussed for a class of the Holling-Tanner prey-predator ecological model with diffusion and cross-diffusion.The biological implication of cross-diffusion means that the prey species exercise a self-defense mechanism to protect themselves from the attack of the predator.By means of maximum principle and Harnack inequality,the prior estimate to the positive solutions of the model is given.Furthermore,by using the integral property,the non-existence of the non-constant positive sol...
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第1期20-24,共5页 Journal of Shaanxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(10571115) 陕西省自然科学基础研究计划项目(2007A11)
关键词 交叉扩散项 Holling-Tanner捕食-食饵模型 正解 存在性 cross-diffusion Holling-Tanner prey-predator model positive solution existence
  • 相关文献

参考文献5

二级参考文献26

  • 1王治国,李艳玲.一类三物种竞争-互助型反应扩散方程解的渐近行为[J].陕西师范大学学报(自然科学版),2005,33(1):15-18. 被引量:3
  • 2曾宪忠.带有第三边值的捕食模型的正稳态解的存在性[J].应用数学学报,2006,29(5):801-820. 被引量:10
  • 3[1]Blat J, Brown K J. Bifurcation of steady-state solutions in predator-prey and competition systems[J]. Proc Roy Soc Edinburgh, 1984, 97A: 21~34. 被引量:1
  • 4[2]Conway E D, Gardner R, Smoller J. Stability and bifurcation of steady state solutions for predator-prey equations[J]. Adv Appl Math, 1982, 3: 288~334. 被引量:1
  • 5[3]Li L, Ghoreshi A. On positive solutions of general nonlinear elliptic symbolic interacting systems[J]. Applicable Anal, 1991, 40: 281~295. 被引量:1
  • 6[4]Wu J H. Global bifurcation of coexistence state for the competition model in the hemostat[J]. Nonl Anal, 2000, 39: 817~835. 被引量:1
  • 7[5]Crandall M G, Rabinowitz P H. Bifurcation, perturbation of simple eigenvalues, and linearized stability[J]. Arch Rational Mech Anal, 1973, 52: 161~180. 被引量:1
  • 8[6]Smoller J. Shock waves and reaction-diffusion equations[M]. New York: Springer-Verlag, 1983. 被引量:1
  • 9Lou Y.Necessary and sufficient condition for the existence of positive solutions of certain cooperative system[J].Nonlinear Analysis,1996,26(6):1 079-1 095. 被引量:1
  • 10Korman P,Leung A.On the existence and uniqueness of positive steady state in the Volterra-Lotka ecological models with diffusion[J].Application Analysis,1987,26:145-160. 被引量:1

共引文献11

同被引文献24

  • 1张曼清.应用常微分方程建立数学模型分析综合国力[J].长春工程学院学报(自然科学版),2007,8(1):86-88. 被引量:2
  • 2王树禾.综合国力的数学建模[J].高校应用数学学报(A辑),1997(1):29-36. 被引量:10
  • 3Jaeduck J, Ni Weiming, Tang Maoxun. Global bifurca- tion and structure of Turing patterns in the 1-D Lengyel- Epstein model [J]. Journal of Dynamics and Differential Equations, 2004, 16(2): 297-320. 被引量:1
  • 4Smoller J. Shock waves and reaction-diffusion equations [M]. New York:Springer-Verlag, 1983. 被引量:1
  • 5Wu Jianhua. Global bifurcation of coexistence state for the competition model in the chemostat [J]. Nonlinear Analysis, 2000, 39: 817-835. 被引量:1
  • 6Holling C S. Some characteristics of simple types of predation and parasitism. Can Entomol, 1959 ; 91 : 385--398. 被引量:1
  • 7Holling C S. The functional response of predators to prey density and its role in mimicry and population regulation. Mem Entomol Soc Can, 1965 ; 45 : 1-60. 被引量:1
  • 8Huang Y, Chen F D. Stability analysis of a prey-predator model with Holling type Ⅲ response function incorporating prey refuge. Appl Math and Comp, 2006; 182:672-683. 被引量:1
  • 9Apreutesei N, Dimitriu G. On a prey-predator reaction-diffusion sys- tem with Holling type III functional response. J Comput Appl Math, 2010 ; 235 : 366--379. 被引量:1
  • 10Ko W, Ryu K. A qualitative study on general Gause-type predator- prey models with constant diffusion rates. J Math Anal Appl, 2008 ; 344 : 217--230. 被引量:1

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部