期刊文献+

基于图论和模糊规划的物流网络优化 被引量:5

Optimization of Logistics Network Based on Graph Theory and Fuzzy Planning
下载PDF
导出
摘要 针对现有物流园区功能发挥不足的问题,依据物流网络系统特点,提出以区位优势为依托,以经济关联为核心的网络优化方法.为此,以图论方法确定结点的区位优势,以模糊规划方法确定多目标效益优势,构造了图—FUZZY相结合的物流网络优化模型,同时归结为简捷的0-1整数规划求解,并用物流网络工程实例检证其有效可行性. Considering the insufficient performance of existing logistics districts functions, this paper proposes a optimization methed of the logistics structure based on the theory of location advantage and economic relationship. The location advantage determined using the graphs theory, and the benefit superiority of targets determined using the fuzzy theory. Then the logistic network optimization model is set up conjoined with graph theoryFUZZY logic, and finally come down to 0-1 integer programming. The feasibility of the model is proved by an instance of logistics network.
作者 张桓奇 张毅
出处 《交通运输系统工程与信息》 EI CSCD 2005年第6期91-95,共5页 Journal of Transportation Systems Engineering and Information Technology
基金 吉林省交通科技基金项目(200415).
关键词 图论 模糊规划 物流网络 优化 fuzzy graph theory logistics network optimizing
  • 相关文献

参考文献8

二级参考文献56

  • 1陈守煜.多目标系统模糊关系优选决策理论与应用[J].水利学报,1994,26(8):62-66. 被引量:60
  • 2Scaparra M P. Facilities, locations, customers:building blocks of location models:a survey[R]. University of Pisa,2001. http://www.di.unipi.it/~scaparra/resume.html. 被引量:1
  • 3Hakimi S L. Optimal locations of switching centers and the absolute centers and medians of a graph[J]. Oper. Res.,1970,4:B-31. 被引量:1
  • 4Tanel B C,Richard L. Location on networks:a survey[J]. Management Science,1983,29(4):482~497. 被引量:1
  • 5Kariv O,Hakimi S L. An algorithmic approch to network location problems,part1:the p-centers[J]. SIAM J. Appl. Math.,1979,37:513~538. 被引量:1
  • 6Handler G Y. Minimax location of a facility in an undirected tree graph[J]. Transportation Sci.,1973,7:287~293. 被引量:1
  • 7Lin C C. On the vertex addends in minimax location problems[J]. Transportation Sci.,1975,9:165~168. 被引量:1
  • 8Dearing P M,Francis R L. A minimax location problem on a network[J]. Transportation Sci.,1974,8:333~343. 被引量:1
  • 9Schmeichel E F,Pierce J G. On the p-centers in networks[J]. Transportation Sci.,1978,12:1~15. 被引量:1
  • 10Cockanye E J,Hedetniem S M. Linear algorithms for finding Jordan center and path center of a tree[J]. Transportation Sci.,1981,15:98~114. 被引量:1

共引文献45

同被引文献41

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部