期刊文献+

Skin tissue engineering advances in severe burns:review and therapeutic applications 被引量:16

原文传递
导出
摘要 Current advances in basic stem cell research and tissue engineering augur well for the development of improved cultured skin tissue substitutes:a class of products that is still fraught with limitations for clinical use.Although the ability to grow autologous keratinocytes in-vitro from a small skin biopsy into sheets of stratified epithelium(within 3 to 4 weeks)helped alleviate the problem of insufficient donor site for extensive burn,many burn units still have to grapple with insufficient skin allografts which are used as intermediate wound coverage after burn excision.Alternatives offered by tissue-engineered skin dermal replacements to meet emergency demand have been used fairly successfully.Despite the availability of these commercial products,they all suffer from the same problems of extremely high cost,sub-normal skin microstructure and inconsistent engraftment,especially in full thickness burns.Clinical practice for severe burn treatment has since evolved to incorporate these tissue-engineered skin substitutes,usually as an adjunct to speed up epithelization for wound closure and/or to improve quality of life by improving the functional and cosmetic results long-term.This review seeks to bring the reader through the beginnings of skin tissue engineering,the utilization of some of the key products developed for the treatment of severe burns and the hope of harnessing stem cells to improve on current practice. Current advances in basic stem cell research and tissue engineering augur well for the development of improved cultured skin tissue substitutes:a class of products that is still fraught with limitations for clinical use.Although the ability to grow autologous keratinocytes in-vitro from a small skin biopsy into sheets of stratified epithelium(within 3 to 4 weeks)helped alleviate the problem of insufficient donor site for extensive burn,many burn units still have to grapple with insufficient skin allografts which are used as intermediate wound coverage after burn excision.Alternatives offered by tissue-engineered skin dermal replacements to meet emergency demand have been used fairly successfully.Despite the availability of these commercial products,they all suffer from the same problems of extremely high cost,sub-normal skin microstructure and inconsistent engraftment,especially in full thickness burns.Clinical practice for severe burn treatment has since evolved to incorporate these tissue-engineered skin substitutes,usually as an adjunct to speed up epithelization for wound closure and/or to improve quality of life by improving the functional and cosmetic results long-term.This review seeks to bring the reader through the beginnings of skin tissue engineering,the utilization of some of the key products developed for the treatment of severe burns and the hope of harnessing stem cells to improve on current practice.
出处 《Burns & Trauma》 SCIE 2016年第1期13-26,共14页 烧伤与创伤(英文)
基金 The authors are deeply saddened by the recent passing(2nd November 2015)of Professor Howard Green the pioneer of cultured skin cell therapy.The authors are always grateful to him for his help and the gift of 3T3-J2 which made possible the use of cultured epithelial autografts to treat severe burn injuries in Singapore
关键词 BURNS Skin tissue engineering Stem cells Cultured epithelial autografts Dermal substitutes Microskin grafting Burns Skin tissue engineering Stem cells Cultured epithelial autografts Dermal substitutes Microskin grafting
  • 相关文献

同被引文献70

引证文献16

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部