期刊文献+

Hydrolysis of mechanically pre-treated cellulose catalyzed by solid acid SO4^2--TiO2 in water–ethanol solvent 被引量:5

Hydrolysis of mechanically pre-treated cellulose catalyzed by solid acid SO42--TiO2 in water–ethanol solvent
下载PDF
导出
摘要 An efficient catalyst SO4^2--TiO2(ST) from industrial metatitanic acid has been successfully prepared to catalyze hydrolysis of ball-milling cellulose. The results show that the highest catalytic efficiency is obtained for ST calcined at 450 ℃(ST-450) with the yield of 21.8% glucose, 13.0% 5-HMF and 4.2% furfural at 200 ℃ for30 min. The ball milling of cellulose and solid acid catalyst significantly enhances the cellulose hydrolysis. The high Lewis to Bronsted acid sites ratio for ST-450 induced by bidentate ligands between SO4^2-and TiO2 benefits high organics yield, and high total acid sites contribute to the high cellulose conversion. The large pore volume of 0.29 cm^3·g^-1 and appropriate pore size of 7.35 nm of ST-450 also contribute to the high performance. High reaction temperature over 200 ℃ exhibits negative effect on glucose and 5-HMF yield due to undesired side reactions, while furfural product is stable in the reaction system. The bidentate ligands between SO4^2-and TiO2 are considered as active acid sites for cellulose hydrolysis in water–ethanol solvents. An efficient catalyst SO42--TiO2(ST) from industrial metatitanic acid has been successfully prepared to catalyze hydrolysis of ball-milling cellulose. The results show that the highest catalytic efficiency is obtained for ST calcined at 450 °C(ST-450) with the yield of 21.8% glucose, 13.0% 5-HMF and 4.2% furfural at 200 °C for30 min. The ball milling of cellulose and solid acid catalyst significantly enhances the cellulose hydrolysis. The high Lewis to Br?nsted acid sites ratio for ST-450 induced by bidentate ligands between SO42-and TiO2 benefits high organics yield, and high total acid sites contribute to the high cellulose conversion. The large pore volume of0.29 cm3·g-1 and appropriate pore size of 7.35 nm of ST-450 also contribute to the high performance. High reaction temperature over 200 °C exhibits negative effect on glucose and 5-HMF yield due to undesired side reactions, while furfural product is stable in the reaction system. The bidentate ligands between SO42-and TiO2 are considered as active acid sites for cellulose hydrolysis in water–ethanol solvents.
出处 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第1期136-142,共7页 中国化学工程学报(英文版)
基金 Supported by the Key Program of National Natural Science Foundation of China(No.21336008).
关键词 CELLULOSE Industrial metatitanic ACID Solid ACID TiO2 HYDROLYSIS Ball MILLING Cellulose Industrial metatitanic acid Solid acid TiO2 Hydrolysis Ball milling
  • 相关文献

参考文献1

二级参考文献1

共引文献1

同被引文献12

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部