期刊文献+

基于自适应多特征表观模型的目标压缩跟踪 被引量:2

Object compressive tracking based on adaptive multi-feature appearance model
下载PDF
导出
摘要 针对压缩跟踪算法中表观模型的视觉表达特征单一、统计模型缺乏柔性的问题,提出一种自适应的多特征表观建模方法.该方法引入了对梯度、边缘等图像细节描述能力更强的Surf特征,并通过构建两级观测矩阵解决多维特征的观测问题,与亮度特征进行融合,使视觉表达更加丰富、全面;通过计算正负样本特征所服从的概率分布曲线的Hellinger距离,分析特征对目标和背景的区分能力,自适应地调整统计模型中各特征之间的权重,使统计模型能更好地利用对目标跟踪有益的信息,根据目标和背景的变化及时进行更新.实验结果表明:该自适应多特征表观模型能更加准确地描述实际场景中目标和背景的复杂变化,在保持高效率的同时,极大地提高了跟踪算法的鲁棒性和准确性. An adaptive multi-feature modelling method was proposed to resolve the problems of simple feature and inflexible modelling existed in the appearance model of compressive tracking.This method makes the visual representation more abundant and comprehensive through fusing intensity with the Surftype feature which has strong power to describe the detail information like gradient and edge.A two-stage measurement matrix is constructed to measure the multi-dimension features.The Hellinger distance between a feature's distributions of positive and negative samples is computed to analyze the feature's ability of discriminating the object from background.The weights of features in the statistical model can be adjusted adaptively to help the model efficiently explore information that is useful for object tracking,and update according to the changes of object and background.Experimental results show that this adaptive multi-feature modelling method can describe the complex changes of object and background in the real world more accurately,and greatly improve the tracking algorithm's robustness and precision,while holding the high efficiency.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2014年第12期2132-2138,2171,共8页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(61071219 61102132)
关键词 压缩感知 目标跟踪 自适应模型 多特征表观模型 compressive sensing object tracking adaptive model multi-feature appearance model
  • 相关文献

参考文献13

  • 1LI X, HU W, SHEN C, et al. A survey of appearance models in visual object tracking [J]. ACM transactions on Intelligent Systems and Technology (TIST), 2013, 4(4): 58-99. 被引量:1
  • 2DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. 被引量:1
  • 3CANDES E J, TAO T. Near-optimal signal recovery from random projections: Universal encoding strategies?[J]. IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425. 被引量:1
  • 4ZHANG K, ZHANG L, YANG M H. Real-time compressive tracking[C]∥Computer Vision-ECCV 2012. Berlin Heidelberg: Springer, 2012: 864-877. 被引量:1
  • 5朱秋平,颜佳,张虎,范赐恩,邓德祥.基于压缩感知的多特征实时跟踪[J].光学精密工程,2013,21(2):437-444. 被引量:48
  • 6RAO C R. A review of canonical coordinates and an alternative to correspondence analysis using Hellinger distance[J]. Questiió: Quaderns d’Estadística, Sistemes, Informatica i Investigació Operativa, 1995, 19(1): 23-63. 被引量:1
  • 7CANDES E J, TAO T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215. 被引量:1
  • 8BAY H, TUYTELAARS T, VAN GOOL L. Surf: Speeded up robust features[C]∥Computer Vision-ECCV 2006. Berlin Heidelberg: Springer, 2006: 404-417. 被引量:1
  • 9DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]∥IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2005, 1: 886-893. 被引量:1
  • 10ZHU Q, YEH M C, CHENG K T, et al. Fast human detection using a cascade of histograms of oriented gradients[C]∥ IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2006, 2: 1491-1498. 被引量:1

二级参考文献51

  • 1SCHUTZE H, HULL D A, PEDERSEN J O. A comparison of classifiers and document representations for the routing problem[ C ]//Proc of the 18th ACM Int Conf on Research and Development in Information Retrieval. New York : ACM, 1995:229- 237. 被引量:1
  • 2CUTTING D R, KARGER D R, PEDERSON J O, et al. Scatter/gather:a cluster-based approach to browsing large document collections [ C ]//Proc of the 15th Annual Int ACM SIGIR Conf on Research and Development in Information Retrieval. New York:ACM, 1992:315- 329. 被引量:1
  • 3SCHUTEZ H, SILVERSTEIN C. Projections for efficient document clustering[ C]//Proc of the 20th Annual Int ACM SIGIR Conf on Research and Development in Information Retrieval. New York: ACM, 1997,74-81. 被引量:1
  • 4DHILLON I S, MALLELA S, MODHA S. Information theoretic coclustering[C]//Proc of the 9th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York:ACM,2003:89-98. 被引量:1
  • 5PANTEL P, LIN D. Document clustering with committees [ C ]//Proc of the 25th Annual lnt ACM SIGIR Conf on Research and Development in Information Retrieval. 2002:199-206. 被引量:1
  • 6ZHA H, HE X, DING C, et al. Bipartite graph partitioning and data clustering[ C]//Proc of the 10th ACM Conf on Information and Knowledge Management. New York : ACM,2001:25- 32. 被引量:1
  • 7XU W, LIN X, GONG Y. Document clustering based on non-negative matrix factorization [ C ]//Proc of the 26th Annual Int ACM SIGIR Conf on Research and Development in Information Retrieval. New York :ACM,2003:267- 273. 被引量:1
  • 8KONONERKO I. Estimating attributes: analysis and extension of relief[ C]//Proc of European Conf on Machine Learning. 1994: 171- 182. 被引量:1
  • 9SUN Yi-jun. Iterative relief for feature weighting: algorithms, theoties, and applications[J]. IEEE Trans on Pattern Analysis and Machine Intelligence,2007,29 ( 6 ) : 1035-1051. 被引量:1
  • 10NAKARIYAKUI S, CASASENT D P. Adaptive branch and bound algorithm for selecting optimal features [ J ]. Pattern Recognition Letters ,2007,28 ( 12 ) : 1415-1427. 被引量:1

共引文献112

同被引文献8

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部