期刊文献+

基于显著性分析的立体图像视觉舒适度预测 被引量:10

Prediction of visual discomfort of stereoscopic images based on saliency analysis
下载PDF
导出
摘要 分析了传统的基于全局视差特性的像视觉舒适度评价模型的不足,提出了一种基于显著性分析的立体图像视觉舒适度客观预测模型。首先,根据人眼的立体视觉注意力机制,利用协方差矩阵和Sigma特征集分别计算得到图像显著图和深度显著图,并组合得到立体显著图;然后,利用立体显著图加权得到立体图像视觉舒适度感知特征;最后,通过支持向量回归构造视觉舒适度预测函数,建立视觉舒适度感知特征和主观评价值之间的关系模型,从而预测得到立体图像视觉舒适度客观评价值。实验结果表明,本文评价方法的Pearson线性相关系数值达到0.79,Spearman等级相关系数值达到0.81,表明提出的模型更加符合人眼视觉特性,得到的客观评价值与主观感知具有较高的一致性。 The drawbacks of the traditional visual comfort assessment metrics for stereoscopic images by using only global disparity features were analyzed. An objective visual discomfort prediction model of stereoscopic images was proposed based on visual saliency analysis. Firstly, an image saliency map and a depth saliency map were calculated by using covariance matrices and Sigma feature sets respectively according to the stereo visual attention mechanism of human eyes and the stereoscopic saliency map was obtained by combination of the two calculations. Then, visual discomfort perceptual features were obtained by using the stereoscopic saliency map as weighting. Finally, the relationship between the visual discomfort perceptual features and the subjective scores was established by constructing a visual discomfort prediction function with support-vector regression, and the objective visual comfort scores were predicted. Experimental results show that the Pearson Linear Correlation Coefficient (PL-CC) index of the proposed method reaches 0.79, and the Spearman Rank Order Correlation Coefficient (SRCC) index reaches 0.81. These results indicate that the proposed model can achieve higher consis-tency with subjective perceptual of stereoscopic images, and is more consistent with human visual systems.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2014年第6期1631-1638,共8页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.61271021) 宁波市自然科学基金资助项目(No.2012A610039)
关键词 立体图像 视觉舒适度评价 视觉显著图 协方差矩阵 Sigma特征集 stereoscopic image visual comfort assessment visual saliency map covarianee matrix Sigma feature set
  • 相关文献

参考文献6

二级参考文献78

共引文献2364

同被引文献77

  • 1曲海成,田小容,刘腊梅,石翠萍.多尺度显著区域检测图像压缩[J].中国图象图形学报,2020,0(1):31-42. 被引量:10
  • 2张修军,郭霞,金心宇.带标记矫正的二值图象连通域像素标记算法[J].中国图象图形学报(A辑),2003,8(2):198-202. 被引量:44
  • 3白雪冰,王克奇,王辉.基于灰度共生矩阵的木材纹理分类方法的研究[J].哈尔滨工业大学学报,2005,37(12):1667-1670. 被引量:88
  • 4PETERS II R, STRICKLAND R. Image complexity metrics for automatic Target recognizers [ C]. In: Automatic Target Recognizer System and Technology Conference, October 1990:1-17. 被引量:1
  • 5ZOU J,LIU CH C. Texture classification by matching co-occurrence matrices on statistical manifolds [ C ]. 10th IEEE In- ternational Conference on Computer and Information Technology( CIT 2010), Bradford, UK, June 29-July1,2010:1-7. 被引量:1
  • 6MARIO I, CHACON M, ALMA D, et al.. Image complexity measure: a human criterion free approach [ C ]. in: Proc. NAFIPS 2005 IEEE, Detroit, MI, USA ,June 26-28,2005:241-246. 被引量:1
  • 7Mario I C M, Luis E A D, Abdi D S. A fuzzy approach on image complexity measure [ J ]. Computaci6n y Sistemas ,2007, 10(3) :268-284. 被引量:1
  • 8Matthieur Perreira Da Silva,Vincent COURBOULAY,Pascal Estraillier. Image Complexity Measure Based on Visual At- tention[ C]. 18'h IEEE International Conference on Image Processing,l 1-14 Sept. 2011: 3281-3284. 被引量:1
  • 9MOLDER A, MARTENS O, SAAR T, etal.. La- ser line detection with sub-pixel accuracy [J]. Elek- tronika ir Elektrotechnika , 2014,20(5) 132-135. 被引量:1
  • 10QI L, ZHANGY, WANGS, etal.. Laser cutting of irregular shape ob)eet based on stereo vision lasergalvanometric scanning system [J]. Optics and La- sers in Engineering, 2015,68 : 180-187. 被引量:1

引证文献10

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部