期刊文献+

改进的基于多示例学习的目标跟踪方法研究 被引量:2

AN IMPROVED TARGET TRACKING METHOD BASED ON MULTIPLE INSTANCES LEARNING
下载PDF
导出
摘要 针对复杂场景下的跟踪问题,提出一种新的基于多示例学习的目标跟踪方法。该方法首先利用局部描述算子(Harr-like特征)表征目标和周围背景区域,分别视为正负样本,然后利用基于Boosting的在线多示例学习(MILBoost)建立一种适应性的外观模型作为二值分类器。并提出一种修正的搜索目标位置算法,使haar小波和区域协方差矩阵相结合,取最大响应样本为新目标位置。该方法能够有效解决视频场景中目标受遮挡、旋转和光照变化等问题,具有鲁棒的跟踪性能。 For tracking issue in complex scenes, a novel target tracking method based on multiple instances learning (MIL) is proposed. In this method, a local descriptor ( Harr-like features) is used to present the target and surrounding background area, and respectively, as the positive and negative samples. Then by using the Boosting-based online multiple instances learning (MILBoost), an adaptive appearance model is established as the binary classifier. Moreover, a modified target location search algorithm is proposed, which makes the Harr-like features and region covariance matrix combined and takes the maximum response sample as the new target location. The method can effectively deal with the problems in video scene such as target occlusions, rotations and illumination changes, etc. , and has robust tracking performance.
出处 《计算机应用与软件》 CSCD 北大核心 2013年第9期276-279,共4页 Computer Applications and Software
关键词 目标跟踪 多示例学习 BOOSTING Harr小波特征区域协方差矩阵 Target tracking Muhiple instances learning Boosting I-Iarr wavelet Feature region covariance matrix
  • 相关文献

参考文献10

  • 1Avidan S. Ensemble Tracking[ J]. IEEE Transactions on Pattern Analy-sis and Machine Intelligence,2007,29(8) :261 -271. 被引量:1
  • 2Avidan S. Support vector tracking[ J]. IEEE Transactions on Pattern A-nalysis and Machine Intelligence,2004,26(8) : 1064 - 1072. 被引量:1
  • 3Viola P,PlMt J,et al. Multiple instance boosting for object detection[C]//Advances in neural information proc扮sing systems ,2006,18 : 1417. 被引量:1
  • 4Babenko B, Yang M, Belongie S. Visual Tracking with Online MultipleInstance Lemming [ C] //IEEE Conference on Computer Vision andPattern Recognition, Miami,2009 :983 - 990. 被引量:1
  • 5Viola P, Jones M. Rapid object detection using a boosted cascade ofsimple features [ C] //IEEE Conference on Computer Vision and Pat-tern Recognition, 2001:511 -518. 被引量:1
  • 6Tuzel 0, Forikli F,Meer P. Region covariance : A fast descriptor for de-tection and classification [ C] //International Conference on ComputerVision,Graz, Austria,2006:589 ~ 600. 被引量:1
  • 7Liu X, Yu T. Gradient feature selection for online boosting[C]//Inter-national Conference on Computer Vision ,2007 : 1 - 8. 被引量:1
  • 8Grabner H, Grabner M, Bischof H. Real-time tracking via on-line boos-ting[ C]//British Machine Vision Conference,2006 :47 - 56. 被引量:1
  • 9Viola P,Jones M. Fast and robust classification using asymmetric ada-boost and a detector cascade [ C] //Advances in neural information pro-cessing systems, 2001. 被引量:1
  • 10http;//v. youku. com/v_show/id_XMTU3MDczNjk2. html. 被引量:1

同被引文献12

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部