期刊文献+

基于小波和Contourlet的改进的图像复原算法 被引量:1

Image restoration algorithm based on wavelet and contourlet
下载PDF
导出
摘要 不同的数学变换工具能够有效表示图像的不同细节结构,小波变换能够有效表示图像中的奇异点,而con-tourlet变换能够有效表示奇异线,为了更好地利用不同变换工具的优势,文中提出一种基于小波和Contourlet的改进的图像复原算法。算法首先分别应用不同的小波基和不同的Contourlet基,基于正则化方法求解出复原图像;然后,将经过不同的滤波器组得到的复原图像通过加权平均的方式融合,得到一幅效果较好的恢复图像。实验结果表明,加权平均之后的图像相比使用单一滤波器的复原图像,其改善的信噪比提高0.1~0.5dB。 Because different mathematical transformation tool can effectively show different details structure of image,an algorithm combining wavelet and contourlet is proposed in order to utilize the various advantages of the transform.Firstly,the algorithm uses various wavelet basis and various contourlet basis to restore the images based on regularities algorithm.Second,the restored images based on contourlet are average weighted,and then find the edge and texture using gradient operator.The restored images based on wavelet are averaged too,minus the edge and texture and so obtain the smooth region.At last,it fuses the smooth,the edge,and the texture to one good quality image.Experiments shows that the improved-signal-noise-ratio of restored image by fused image is 0.1~0.5 dB better than that by any single transform.
出处 《西安邮电学院学报》 2012年第6期37-41,共5页 Journal of Xi'an Institute of Posts and Telecommunications
基金 陕西省教育厅专项科学研究计划基金资助项目(12JK0504 12JK0734 12JK0731) 西安邮电大学青年基金资助项目(ZL201201 1090428) 西安邮电大学博士启动基金资助项目(1091214)
关键词 图像复原 小波变换 CONTOURLET变换 加权平均 image restoration wavelet transform contourlet transform weighted average
  • 相关文献

参考文献12

  • 1Ramesh Neelarnani, Hyeokho Choi and Richard Bara- niuk. ForWaRD: fourier-wavelet regularized deconvo- lution for ill-conditioned systems[J]. IEEE Transac- tions on Signal Processing, 2004,52 (2) :418-433. 被引量:1
  • 2J.M. Bioucas-Dias, M.A.T. Figueiredo, and J. P. Oliveira, Total Variation-Based Image Deconvolution: a Majorization-Minimization Approach[C]//. Proceed- ings of the 14th European Signal Processing Confer- ence. Page.. II, Year of Publication. 2006, ISBN: 1- 4244-0469-X. 被引量:1
  • 3T. Chan and Jianhong Shen. Image processing and a- nalysis: Variational PDE, Wavelet, and Stochastic methods[M]. Society for Industrial and Applied Math- ematics (SIAM), Philadelphia, 2005 : 17-21 : 207-233. 被引量:1
  • 4R. Molina, J. Nunez, F. J. Cortijo, etc. Image restora- tion in astronomy: a Bayesian perspective[J]. IEEE Signal Processing Magazine, 2001, 18(2) : 11-29. 被引量:1
  • 5焦李成,孙强.多尺度变换域图像的感知与识别:进展和展望[J].计算机学报,2006,29(2):177-193. 被引量:45
  • 6Minh N. Do and Martin Vetterli. The Contourlet Transform: An Efficient Directional Multiresolution Image Representation[J]. IEEE Transactions on image processing, 2005,14(2): 2091-2105. 被引量:1
  • 7梅雪,夏良正.Contourlet域目标不变特征提取[J].计算机科学,2010,37(11):275-277. 被引量:2
  • 8王晶,彭国华,赵丛.基于正则化技术的超分辨图像盲复原[J].计算机工程与应用,2008,44(6):42-44. 被引量:1
  • 9Tony F. Chan, Chiu-Kwong Wong. Total variation blind deconvolution[J]. IEEE Transactions on Image Processing, 1998, 7(3): 370-375. 被引量:1
  • 10肖泉,丁兴号,廖英豪.一种有效保持边缘特征的散焦模糊图像复原方法[J].计算机科学,2010,37(7):270-272. 被引量:7

二级参考文献104

共引文献51

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部