期刊文献+

基于卷积稀疏编码和K-SVD联合字典的稀疏表示 被引量:7

Sparse representation by dictionary combined convolutional sparse coding and K-SVD
下载PDF
导出
摘要 针对现有稀疏表示算法存在字典单一、编码冗余的缺点,从人类视觉感知系统层次处理特性出发,依据神经元侧抑制与竞争机理,构建了基于卷积稀疏编码和K-奇异值分解(K-singular value decomposition,K-SVD)的联合字典。在此基础上提出结合卷积匹配追踪和正交匹配追踪算法对图像进行分层稀疏表示。实验结果表明联合字典能够自适应匹配图像中的边缘、斑块、纹理等特征,与单独的卷积字典和K-SVD冗余字典相比,稀疏表示能力更强。 Aiming at the deficiency of existed algorithm with single dictionary and redundant coding, the dictionary combined convolutional sparse coding and K-SVD is constructed in terms of the hierarchical properties of human visual perception systems and the lateral inhibition and competition mechanism of neurons. Further- more, an effective algorithm based on convolutional matching pursuit and orthogonal matching pursuit is pro- posed to obtain sparse image representation with the combined dictionary. The experimental results indicate that the combined dictionary can adaptively match up image geometric structures such as edge, blob, texture. In comparision with convolutional dictionary and redundancy dictionary based on K-SVD, the combined dictionary has sparser image representation.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2012年第7期1493-1498,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(60772079 61071200) 河北省自然科学基金(F2010001294)资助课题
关键词 稀疏表示 视觉感知 侧抑制与竞争 联合字典 卷积匹配追踪 sparse representation visual perception lateral inhibition and competition~ combined dictiona- ry convolutional matching pursuit
  • 相关文献

参考文献19

  • 1罗四维等著..视觉感知系统信息处理理论[M].北京:电子工业出版社,2006:187.
  • 2Rubinstein R, Bruckstein A M, Elad M. Dictionaries for sparse representation modeling[J]. Proceedings of IEEE, 2010, 98(6) : 1045 - 1057. 被引量:1
  • 3Olshausen B A, Field D J. Emergency of simple-cell receptive field properties by learning a sparse eode for nature images[J].Nature, 1996, 381(6583): 607-609. 被引量:1
  • 4Olshausen B A, Field D J. Sparse coding with an overcomplete basis set.. a strategy employed by VI? [J]. Vision Research, 1997, 37(33):3311-3325. 被引量:1
  • 5孙玉宝,肖亮,韦志辉,邵文泽.基于Gabor感知多成份字典的图像稀疏表示算法研究[J].自动化学报,2008,34(11):1379-1387. 被引量:43
  • 6Mallat S G, Zhang Z F. Matching pursuits with time-frequency dictionaries[J]. IEEE Trans. on Signal Processing, 1993, 41(12) 3397 - 3415. 被引量:1
  • 7Davis G M, Mallat S G, Zhang Z F. Adaptive time-frequency de- compositions[J]. Optical Engineering, 1994, 33(7) 2183 - 2191. 被引量:1
  • 8Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit[J]. Society for Industrial and Applied Mathe- matics on Scientific Computing, 1999, 20(1) : 33 - 61. 被引量:1
  • 9Mancera L, Portilla J. LO-nom-based sparse representation through alternate projection[C]//Proc, of the IEEE Interna- tional Conference on Image Processing, 2006 : 2089 - 2092. 被引量:1
  • 10Kavukcuoglu K, Sermanet P, Boureau Y L, et al. Learning convolutional feature hierarchies for visual recognition[C]// Proc. of the Neural Information Processing Systems, 2010: 1-9. 被引量:1

二级参考文献16

  • 1Vinje W E, Gallant J L. Sparse coding and decorrelation in primary visual cortex during natural vision. Science, 2000, 287(5456): 1273-1276 被引量:1
  • 2Olshausen B A, Field D J. Emergency of simple-cell receptive field properties by learning a sparse coding for natural images. Nature, 1996, 381(6583): 607-609 被引量:1
  • 3Olshausen B A, Field D J. Sparse coding with an overcomplete basis set: a strategy employed by VI? Visual Research, 1997, 37(33): 3311-3325 被引量:1
  • 4Mallat S G, Zhang Z F. Matching pursuits with timefrequency dictionaries. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415 被引量:1
  • 5Davis G M, Mallat S G, Zhang Z F. Adaptive time-frequency decompositions. SPIE Journal of Optical Engineering, 1994, 33(7): 2183-2191 被引量:1
  • 6Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM Journal of Scientific Computing, 1999, 20(1): 33-61 被引量:1
  • 7Gorodnitsky I F, Rao B D. Sparse signal reconstruction from limited data using FOCUSS: are-weighted minimum norm algorithm. IEEE Transactions on Signal Processing, 1997, 45(3): 600-616 被引量:1
  • 8Figueiredo M A T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-598 被引量:1
  • 9Mancera L, Portilla J. Lo-norm-based sparse representation through alternate projections. In: Proceedings of IEEE International Conference on Image Processing. Washington D. C., USA: IEEE, 2006. 2089-2092 被引量:1
  • 10Bergeau F, Malt S. Match pursuit of images. In: Proceedings of the 1995 International Conference on Image Processing. Washington D. C., USA: IEEE, 1995. 53 被引量:1

共引文献42

同被引文献65

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部