期刊文献+

一种有效保持边缘特征的散焦模糊图像复原方法 被引量:7

Novel Edge-preserving Algorithm for Defocus Blurred Image Restoration
下载PDF
导出
摘要 图像复原过程中图像的主观视觉质量与图像的局部细节信息之间密切相关。针对散焦模糊图像,提出一种新的图像复原方法。所提方法在传统双边总变分正则化方法基础上,通过引入一种具有结构自适应的局部权值函数,构造了一种新的图像复原目标函数。该目标函数综合考虑了图像的全局与局部统计特性,即在整体保真情况下还充分考虑了图像的局部结构信息,使得所提复原方法能更有效地保持图像的边缘等细节信息。与传统BTV正则化方法的比较实验表明,所提方法在边缘保持方面更有效,复原后的图像具有更好的主、客观视觉质量。 Relevant research on image restoration indicates that image' s subjective visual quality is closely related to its local details. A novel restoration algorithm for defocus blurred image was proposed. The proposed algorithm based on BTV regularization framework by introducing a local adaptive weighted function constructs a new cost function for image restoration. This cost function which not only takes into account the global data-fidelity, but also considers the local statistical properties of image,meaning to fully consider the local structural features of image under global data-fidelity, hence behaves much better in edge preservation. Experimental results confirm the effectiveness of the proposed method. The image is restored with better subjective and objective visual quality, compared with other methods such as traditional BTV regularization approach.
出处 《计算机科学》 CSCD 北大核心 2010年第7期270-272,共3页 Computer Science
基金 福建省自然科学基金(2008J0032 2009J01301 2009J01302) 厦门大学985二期信息创新平台资助项目(0000-X07204) 厦门市科技计划高校创新项目(3502Z20083006)资助
关键词 图像复原 点扩散函数 双边总变分 局部权值函数 Image restoration, Point spread function, Bilateral total variation, Local weighted function
  • 相关文献

参考文献8

  • 1Richardson W H.Bayesian-based iterative method of image restoration[J].Journal of the Optical Society of America,1972,62(1):55-59. 被引量:1
  • 2Elad M,Feuer A.Restoration of single super-resolution image from several blurred,noisy and down-sampled measured images[J].IEEE Trans.Image Process,1997,6:1646-1658. 被引量:1
  • 3Rudin L,Osher S,Fatemi E.Nonlinear total variation based noise removal algorithms[J].Physica D,1992,60:259-268. 被引量:1
  • 4Chan T F,Wong C K.Total variation blind de-convolution[J].IEEE Transaction on Image Processing,1998,3(7):370-375. 被引量:1
  • 5Babacan S D,Molina R,Katsaggelos A K.Total Variation Image Restoration and Parameter Estimation Using Variational Posterior Distribution Approximation[C] ∥IEEE International Conference on Image Processing.2007,1:97-100. 被引量:1
  • 6Farsiu S,Robinson M D,Elad M,et al.Fast and Robust multiframe super resolution[J].IEEE Transaction on Image Process,2004,13(10):1327-1344. 被引量:1
  • 7贲圣兰,杨静宇,苏光大.文本图像的双边总变分超分辨率恢复方法[J].计算机科学,2007,34(11):201-204. 被引量:2
  • 8Elad M.On the Bilateral Filter and Ways to Improve It[J].IEEE Transaction on Image Processing,2002,11(10):1141-1151. 被引量:1

二级参考文献10

  • 1Caple D,Zisserman A.Super-resolution Enhancement of Text Image Sequences.In:15th International Conference on Pattern Recognition,Barcelona,Spain,September 2000 被引量:1
  • 2Baker S,Kanade T.Limits on Super-resolution and How to Break Them.IEEE Trans on Pattern Analysis and Machine Intelligence,2002,9(24):1167-1183 被引量:1
  • 3Chiang M,Boult T E.Local Blur Estimation and Super-resolution.In:Proc CVPR,1997.821-826 被引量:1
  • 4Thouin P,Chiang C.A Method for Restoration of Low Resolution Text Images.International Journal on Document Analysis and Recognition,2000,4(22):200-210 被引量:1
  • 5Donaldson K,Myer G K.Bayesian super-resolution of text in video with a text-specific bimodal prior.Computer Vision and Pattern Recognition,2005,1:1118-1195 被引量:1
  • 6Elad M,Feuer A.Restoration of a single super-resolution image from several blurred,noisy,and undersanpled measured images.IEEE Trans on Image Processing,1997(6):1646-1658 被引量:1
  • 7Farsiu S.A Fast and Robust Frame Work For Image Fusion and Enhancement:[Phd Dissertation].University of California,Santa Cruz 被引量:1
  • 8Tomasi C,Manduchi R.Biliteral filtering for gray and color images.In:Proceedings of the Sixth International Conference on Computer Vision,1998.839-846 被引量:1
  • 9Elad M.On the origin of the bilateral filter and ways to improve it.IEEE Trans on Image Processing,2002,10(11):1141-1151 被引量:1
  • 10Park Sung Cbeol,Park Min Kyu,Kang Moon Gi.Super-Resolution Image Reconstruction:A Technical Overview.IEEE Signal Processing Magazine,2003(20):21-36 被引量:1

共引文献1

同被引文献57

  • 1焦李成,孙强.多尺度变换域图像的感知与识别:进展和展望[J].计算机学报,2006,29(2):177-193. 被引量:45
  • 2徐宗琦,高璐.一种盲复原图像振铃效应的后处理与质量评价方法[J].计算机应用,2007,27(4):986-988. 被引量:11
  • 3毋红军 刘章.统计数据的异常值检验.华北水利水电学报,2003,24(1):69-71. 被引量:3
  • 4Ramesh Neelarnani, Hyeokho Choi and Richard Bara- niuk. ForWaRD: fourier-wavelet regularized deconvo- lution for ill-conditioned systems[J]. IEEE Transac- tions on Signal Processing, 2004,52 (2) :418-433. 被引量:1
  • 5J.M. Bioucas-Dias, M.A.T. Figueiredo, and J. P. Oliveira, Total Variation-Based Image Deconvolution: a Majorization-Minimization Approach[C]//. Proceed- ings of the 14th European Signal Processing Confer- ence. Page.. II, Year of Publication. 2006, ISBN: 1- 4244-0469-X. 被引量:1
  • 6T. Chan and Jianhong Shen. Image processing and a- nalysis: Variational PDE, Wavelet, and Stochastic methods[M]. Society for Industrial and Applied Math- ematics (SIAM), Philadelphia, 2005 : 17-21 : 207-233. 被引量:1
  • 7R. Molina, J. Nunez, F. J. Cortijo, etc. Image restora- tion in astronomy: a Bayesian perspective[J]. IEEE Signal Processing Magazine, 2001, 18(2) : 11-29. 被引量:1
  • 8Minh N. Do and Martin Vetterli. The Contourlet Transform: An Efficient Directional Multiresolution Image Representation[J]. IEEE Transactions on image processing, 2005,14(2): 2091-2105. 被引量:1
  • 9Tony F. Chan, Chiu-Kwong Wong. Total variation blind deconvolution[J]. IEEE Transactions on Image Processing, 1998, 7(3): 370-375. 被引量:1
  • 10You-Wei Wen, Michael K. NG, Wai-Ki Ching. Itera- tive algorithms based on decoupling of deblurring and denoising for image restoration[J]. SIAM, 2008, 30 (5) : 2655-2674. 被引量:1

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部