期刊文献+

自适应正则有参超分辨率图像盲恢复 被引量:4

Adaptive Regularized Blind Parametric Super-resolution Restoration and Enhancement
下载PDF
导出
摘要 基于重建的超分辨率(SR)方法中,图像求解是典型的高维病态问题,需借助有效的正则来稳定求解。在Nguyen等人的正则有参超分辨率盲恢复框架(RPSR)基础上,引入基于图像局部光滑特征的正则处理,提出自适应正则的有参超分辨率方法(ARPSR),并从方便计算的角度,进一步提出了ARPSR的近似求解方法,即先将ARPSR问题,化为两个RPSR问题的带权组合,然后用RPSR框架估计图像模糊系统的自由参数和最优正则参数,用重排系统矩阵的方法构造预处理器,最后用预处理共轭梯度方法(PCG)求解超分辨率图像。算法分析和试验结果表明,ARPSR方法是对RPSR框架的进一步改进。 Image super-resolution restoration and enhancement (SR) based on reconstruction is a typically ill-posed and high-dimensional problem, which needs effective regularization to stable the solution. Lately a parametric and regularized blind SR( RPSR) was proposed by Nguyen et al, which has set up a frame work for the blind SR. Under the frame of RPSR, in this paper, an adaptive RPSR(ARPSR) based on image locale smoothing characteristics is put forward, and for the conveniences of computing, an approximate ARPSR is proposed also, by which at first the ARPSR problem is transformed into a weighted combination of two RPSR problems, then the optical blurring and regularization free parameters are estimated by the standard RPSR frame, and then by exploiting the structures of the reordered system matrices, a preconditioner is constructed for the preconditioned conjugate gradient method(PCG) by which the high-resolution image is solved at last. Computational analyses and experimental results with synthetic low-resolution sequences show the improvements of ARPSR to the RPSR frame.
出处 《中国图象图形学报(A辑)》 CSCD 北大核心 2004年第10期1197-1203,共7页 Journal of Image and Graphics
基金 香港特区政府研究资助局资助项目(CUHK/4180/01E)
关键词 超分辨率 基于图像 自适应 正则 恢复 高维 算法分析 求解 共轭梯度方法 近似 image super-resolution blind restoration and enhancement, adaptive regularization, preconditioned conjugate gradient method
  • 相关文献

参考文献10

  • 1Baker S, Kanade T. Limits on super-resolution and how to break them [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(9): 1167-1183. 被引量:1
  • 2Nguyen N, Milanfa P, Golub G H. Efficient generalized crossvalidation with applications to parametric image restoration and resolution enhancement [J]. IEEE Transactions on Image Processing, 2001, 10(9):1299-1308. 被引量:1
  • 3Nguyen N, Milanfa P, Golub G H. Computationally efficient super-resolution image reconstruction algorithm[J]. IEEE Transactions on Image Processing, 2001, 10(4): 573-583. 被引量:1
  • 4Nguyen N. Numerical Techniques for Image Super-resolution[D]. Standford University, Standford, California, United States of America, 2000. 被引量:1
  • 5Elad M, Feuer A. Restoration of a single super-resolution image from several blurred, noisy, and undersampled measured images[J]. IEEE Transactions on Image Processing, 1997, 6(12):1646-1658. 被引量:1
  • 6Andrews H, Hunt B. Digital Image Restoration [M]. PrenticeHall, Englewood Cliffs, New Jersey, United States of America,1977. 被引量:1
  • 7Reeves S J, Mersereau R. Blur identification by the method of generalized cross-validation [J]. IEEE Transactions on Image Processing [J], 1992, 1(3): 301-311. 被引量:1
  • 8Glub G H, Matt U V. Generalized cross-validation for large scale problems [J]. Journal of Computational and Graphics,1997, 6(1): 1-34. 被引量:1
  • 9Smith R L. Moore-penrose inverse of block circulant and block k-circulant matrices [J]. Linear Algebra and its Applications,1977, 16: 237-245. 被引量:1
  • 10Jansen M. House image[EB/OL]. Http://www. cs. kuleuven.ac. be/-maarten/image/house, tif, 2002-01-12/2003-12-11. 被引量:1

同被引文献62

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部