期刊文献+

基于归一化超拉普拉斯先验项的运动模糊图像盲复原 被引量:18

Blind image restoration based on normalized hyper laplacian prior term
下载PDF
导出
摘要 基于变分方法提出了一种运动模糊退化图像的盲复原算法。考虑自然场景的图像梯度符合长拖尾概率分布,提出的方法采用归一化的超拉普拉斯先验项作为变分能量方程中的光滑项,从而有利于图像在去模糊的求解过程中正确解收敛。由于建立的能量方程不是严格凸的函数,故引入了分裂方法进行求解。整个运动模糊退化图像的盲复原过程在多尺度框架下由粗到细尺度渐进执行。最后利用估计出的点扩展函数计算清晰图像。相对于传统的盲复原算法,本文提出的算法不需要预测图像的梯度信息和对梯度进行筛选,直接求解能量方程就能够得到相应的正确解。得到的结果验证了本文算法的有效性。 An blind image restoration method for degraded motion images is proposed based on the variational method.As image gradient is coincident with the probability distribution of heavy-tailed characteristics in a natural scene,the method uses normalized hyper Laplacian prior term as a smooth term of variational energy equation to converge the solution of the equation exactly in image debluring.To reduce the complexity of equation solution,a fast method called split method is introduced.A multi-scale framework is established to perform the deblur procedure from large scale to small scale until the blur kernel is gotten.Finally,the estimated kernel function and clear image are used as the initial value for the next scale.Using the estimated kernel,the final clear image can be gotten by the total variation method.As compared with traditional image restoration methods,the proposed method can obtain the exact solution by direction solution of the energy equation conveniently without predetermining and selecting the image gradients.Experiments demonstrate the feasibility and validity of the proposed method.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2013年第5期1340-1348,共9页 Optics and Precision Engineering
基金 山东省自然科学基金资助项目(No.ZR2010FQ030) 国家自然科学基金资助项目(No.61170106)
关键词 图像盲复原 运动去模糊 归一化超拉普拉斯先验 变分方法 分裂方法 blind image restoration motion deblur normalized hyper laplacian prior variational method split method
  • 相关文献

参考文献21

  • 1CHAN T, W()NG C, Total variation blind decon- volution[J].IEEE Tran. Image Processing, 1998, 7(3):S70-375. 被引量:1
  • 2FERGUS R, SINGH B, HERTZMANN A, etal. Removing camera shake from a single photograph [J]. ACM Transactiem on Graphics, 2006, 25(3): 787-794. 被引量:1
  • 3SHAN Q. JIA J, AGARWAI.A A . High-quality motion deblurring from a single image [J]. ACMTransaction on Graphics, 2008, 27(3) : 731-740. 被引量:1
  • 4LEVIN A, WEISS Y, DURAND E, ec ag. Under standing and evaluating blind deconvolution algo rithms [C]. CVPR, 2009:1964- 1971. 被引量:1
  • 5HUI J, LIU C. Motion blur identification from im- age gradients [C]. CVPR, 2008:1- 8. 被引量:1
  • 6CHO S, I.EE S. Fast motion deblurring [C]. Proc. of SICA?,RAPH ASIA, 2009 : 1-8. 被引量:1
  • 7XU L and .IIA J. Two-Phase Kernel Estimation for Robust Motion Deblurring [C]. ECCr, 2010:157- 170. 被引量:1
  • 8HONG H, PARK K. Single-image motion deblur- ring using adaptive anisotropic regularization[J].Optical Engineering', 2010, 49(9): 097008-1-13. 被引量:1
  • 9RASKAR R, AGRAWAL A, TUMBLIN J. Coded exposure photography. Motion deblurring via flut- tered shutter [J]. ACM Transaction on Graphics, 2006, 25(3) :795-804. 被引量:1
  • 10陈前荣,陆启生,成礼智.基于方向微分的运动模糊方向鉴别[J].中国图象图形学报(A辑),2005,10(5):590-595. 被引量:41

二级参考文献61

共引文献74

同被引文献225

引证文献18

二级引证文献254

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部