针对现有直流断路器存在的分断故障电流峰值高、通态损耗大、成本高以及机械开关电弧等问题,提出一种基于电容换流的限流型高压直流断路器(current-limiting high-voltage DC circuit breaker based on capacitor commutation,CC&CL...针对现有直流断路器存在的分断故障电流峰值高、通态损耗大、成本高以及机械开关电弧等问题,提出一种基于电容换流的限流型高压直流断路器(current-limiting high-voltage DC circuit breaker based on capacitor commutation,CC&CL-HDCCB)拓扑。正常运行时系统电流仅流过机械开关,导通损耗小;当进行故障开断操作时,投入电容进行充电,利用较高的电容电压提供电力电子器件的导通电压,使故障电流从机械开关支路转移,可用于高电压等级工况;换流支路与限流支路共同作用避免了故障电流的自然上升过程,有效降低了故障电流峰值。对断路器故障处理过程中的机械开关耐压和各支路电流等方面进行分析,给出了合理的元件参数和运行方式。最后利用PSCAD/EMTDC软件进行仿真验证,与相关断路器就故障电流峰值、避雷器吸能、电容电压等方面进行对比分析,验证了所提结构的合理性和经济性。展开更多
All-inorganic α-CsPbBr_(x)I_(3-x)perovskites featuring nano-sized crystallites show great potential for pure-red light-emitting diode(LED)applications.Currently,the CsPbBr_(x)I_(3-x)LEDs based on nano-sized α-CsPbBr...All-inorganic α-CsPbBr_(x)I_(3-x)perovskites featuring nano-sized crystallites show great potential for pure-red light-emitting diode(LED)applications.Currently,the CsPbBr_(x)I_(3-x)LEDs based on nano-sized α-CsPbBr_(x)I_(3-x)crystallites have been fabricated mainly via the classical colloidal route including a tedious procedure of nanocrystal synthesis,purification,ligand or anion exchange,film casting,etc.With the usually adopted conventional LED device structure,only high turn-on voltages(>2.7)have been achieved for CsPbBrxl3-x LEDs.Moreover,this mix-halide system may suffer from severe spectra-shift under bias.In this report,CsPbBr_(x)I_(3-x)thin films featuring nano-sized crystallites are prepared by incorporating multiple ammonium ligands in a one-step spin-coating route.The multiple ammonium ligands constrain the growth of CsPbBr_(x)I_(3-x)nanograins.Such CsPbBr_(x)I_(3-x)thin films benefit from quantum confinement.The corresponding CsPbBr_(x)I_(3-x)LEDs,adopting a conventional LED structure of indium-doped tin oxide(ITO)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)/CsPbBr_(x)I_(3-x)/[6,6]-phenyl C61 butyric acid methyl ester(PCBM)/bathocuproine(BCP)/AI,emit pure-red color at Commission Internationale de I'eclairage(CIE)coordinates of(0.709,0.290),(0.711,0.289),etc.,which represent the highest color-purity for reported pure-red perovskite LEDs and meet the Rec.2020 requirement at CIE(0.708,0.292)very well.The CsPbBr_(x)I_(3-x)LED shows a low turn-on voltage of 1.6 V,maximum external quantum efficiency of 8.94%,high luminance of 2,859 cd·m^(-2),and good color stability under bias.展开更多
A vertical junction barrier Schottky diode with a high-K/low-K compound dielectric structure is proposed and optimized to achieve a high breakdown voltage(BV).There is a discontinuity of the electric field at the inte...A vertical junction barrier Schottky diode with a high-K/low-K compound dielectric structure is proposed and optimized to achieve a high breakdown voltage(BV).There is a discontinuity of the electric field at the interface of high-K and low-K layers due to the different dielectric constants of high-K and low-K dielectric layers.A new electric field peak is introduced in the n-type drift region of junction barrier Schottky diode(JBS),so the distribution of electric field in JBS becomes more uniform.At the same time,the effect of electric-power line concentration at the p-n junction interface is suppressed due to the effects of the high-K dielectric layer and an enhancement of breakdown voltage can be achieved.Numerical simulations demonstrate that GaN JBS with a specific on-resistance(R_(on,sp)) of 2.07 mΩ·cm^(2) and a BV of 4171 V which is 167% higher than the breakdown voltage of the common structure,resulting in a high figure-of-merit(FOM) of 8.6 GW/cm^(2),and a low turn-on voltage of 0.6 V.展开更多
Characteristics of the turn-on and turn-off voltage of avalanche p-n junctions were demonstrated and studied. As opposed to existing reports, the differences between the turn-on and turn-offvoltage cannot be neglected...Characteristics of the turn-on and turn-off voltage of avalanche p-n junctions were demonstrated and studied. As opposed to existing reports, the differences between the turn-on and turn-offvoltage cannot be neglected when the size of the p-n junction is in the order of microns. The difference increases inversely with the area of a junction, exerting significant influences on characterizing some parameters of devices composed of small avalanche junctions. Theoretical analyses show that the mechanism for the difference lies in the increase effect of the threshold multiplication factor at the turn-on voltage of a junction when the area of a junction decreases. Moreover, the "breakdown voltage" in the formula of the avalanche asymptotic current is, in essence, the avalanche turn-off voltage, and consequently, the traditional expression of the avalanche asymptotic current and the gain of a Geiger mode avalanche photodiode were modified.展开更多
By introducing a thin p-type layer between the Schottky metal and n-GaN layer, this work presents a Schottky-pn junction diode(SPND) configuration for the GaN rectifier fabrication. Specific unipolar carrier conductio...By introducing a thin p-type layer between the Schottky metal and n-GaN layer, this work presents a Schottky-pn junction diode(SPND) configuration for the GaN rectifier fabrication. Specific unipolar carrier conduction characteristic is demonstrated by the verification of temperature-dependent current–voltage(I–V) tests and electroluminescence spectra.Meanwhile, apparently advantageous forward conduction properties as compared to the pn diode fabricated on the same wafer have been achieved, featuring a lower turn-on voltage of 0.82 V. Together with the analysis model established in the GaN SPND for a wide-range designable turn-on voltage, this work provides an alternative method to the GaN rectifier strategies besides the traditional solution.展开更多
A vertical GaN field-effect transistor with an integrated self-adapted channel diode(CD-FET)is proposed to improve the reverse conduction performance.It features a channel diode(CD)formed between a trench source on th...A vertical GaN field-effect transistor with an integrated self-adapted channel diode(CD-FET)is proposed to improve the reverse conduction performance.It features a channel diode(CD)formed between a trench source on the insulator and a P-type barrier layer(PBL),together with a P-shield layer under the trench gate.At forward conduction,the CD is pinched off due to depletion effects caused by both the PBL and the metal-insulator-semiconductor structure from the trench source,without influencing the on-state characteristic of the CD-FET.At reverse conduction,the depletion region narrows and thus the CD turns on to achieve a very low turn-on voltage(V_(F)),preventing the inherent body diode from turning on.Meanwhile,the PBL and P-shield layer can modulate the electric field distribution to improve the off-state breakdown voltage(BV).Moreover,the P-shield not only shields the gate from a high electric field but also transforms part of C_(GD)to CGS so as to significantly reduce the gate charge(Q_(GD)),leading to a low switching loss(E_(switch)).Consequently,the proposed CD-FET achieves a low V_(F)of 1.65 V and a high BV of 1446 V,and V_(F),Q_(GD)and E_(switch)of the CD-FET are decreased by 49%,55%and 80%,respectively,compared with those of a conventional metal-oxide-semiconductor field-effect transistor(MOSFET).展开更多
Inter-turn fault is a serious stator winding short-circuit fault of permanent magnet synchronous machine(PMSM). Once it occurs, it produces a huge short-circuit current that poses a great risk to the safe operation of...Inter-turn fault is a serious stator winding short-circuit fault of permanent magnet synchronous machine(PMSM). Once it occurs, it produces a huge short-circuit current that poses a great risk to the safe operation of PMSM. Thus, an inter-turn short-circuit fault(ITSCF) diagnosis method based on high frequency(HF) voltage residual is proposed in this paper with proper HF signal injection. First, the analytical models of PMSM after the ITSCF are deduced. Based on the model, the voltage residual at low frequency(LF) and HF can be obtained. It is revealed that the HF voltage residual has a stronger ITSCF detection capability compared to the LF voltage residual. To obtain optimal fault signature, a 3-phase symmetrical HF voltage is injected into the machine drive system, and the HF voltage residuals are extracted. The fault indicator is defined as the standard deviation of the 3-phase HF voltage residuals. The effectiveness of the proposed ITSCF diagnosis method is verified by experiments on a triple 3-phase PMSM. It is worth noting that no extra hardware equipment is required to implement the proposed method.展开更多
A novel trench field stop (FS) insulated gate bipolar transistor (IGBT) with a trench shorted anode (TSA) is proposed. By introducing a trench shorted anode, the TSA-FS-IGBT can obviously improve the breakdown v...A novel trench field stop (FS) insulated gate bipolar transistor (IGBT) with a trench shorted anode (TSA) is proposed. By introducing a trench shorted anode, the TSA-FS-IGBT can obviously improve the breakdown voltage. As the simulation results show, the breakdown voltage is improved by a factor of 19.5% with a lower leakage current compared with the conventional FS-IGBT. The turn off time of the proposed structure is 50% lower than the conventional one with less than 9% voltage drop increased at a current density of 150 A/cm2. Additionally, there is no snapback observed. As a result, the TSA-FS-IGBT has a better trade-off relationship between the turn off loss and forward drop.展开更多
IGBT with high switching speed is described based on the dynamic controlled anode- short,which incorpo- rates a normally- on,p- MOSFET controlled by the anode voltage indirectly.This device works just as normal when ...IGBT with high switching speed is described based on the dynamic controlled anode- short,which incorpo- rates a normally- on,p- MOSFET controlled by the anode voltage indirectly.This device works just as normal when it is in on- state since the channel of the p- MOSFET is pinched- off.During the course of turning off,the channel of the p- MOSFET will prevent the injection of m inorities and introduce an extra access for the carriers to flow to the anode directly,which m akes the IGBT reach its off- state in a shorter time.The simulation results prove that the new structure can reduce the turn- off time by m ore than75 % compared with the normal one under the same break- down voltage and on- state perform ance.Only two more resistors are needed when using this structure,and the re- quirement of the drive circuits is just the sam e as normal.展开更多
文摘针对现有直流断路器存在的分断故障电流峰值高、通态损耗大、成本高以及机械开关电弧等问题,提出一种基于电容换流的限流型高压直流断路器(current-limiting high-voltage DC circuit breaker based on capacitor commutation,CC&CL-HDCCB)拓扑。正常运行时系统电流仅流过机械开关,导通损耗小;当进行故障开断操作时,投入电容进行充电,利用较高的电容电压提供电力电子器件的导通电压,使故障电流从机械开关支路转移,可用于高电压等级工况;换流支路与限流支路共同作用避免了故障电流的自然上升过程,有效降低了故障电流峰值。对断路器故障处理过程中的机械开关耐压和各支路电流等方面进行分析,给出了合理的元件参数和运行方式。最后利用PSCAD/EMTDC软件进行仿真验证,与相关断路器就故障电流峰值、避雷器吸能、电容电压等方面进行对比分析,验证了所提结构的合理性和经济性。
基金the Energy Materials and Surface Sciences Unit of the Okinawa Institute of Science and Technology Graduate University(OIST),the OIST Proof of Concept(POC)Program,the OIST R&D Cluster Research Program,and the Japan Society for the Promotion of Science(JSPS)Grants-in-Aid for Scientific Research[KAKENHI](No.JP18K05266).
文摘All-inorganic α-CsPbBr_(x)I_(3-x)perovskites featuring nano-sized crystallites show great potential for pure-red light-emitting diode(LED)applications.Currently,the CsPbBr_(x)I_(3-x)LEDs based on nano-sized α-CsPbBr_(x)I_(3-x)crystallites have been fabricated mainly via the classical colloidal route including a tedious procedure of nanocrystal synthesis,purification,ligand or anion exchange,film casting,etc.With the usually adopted conventional LED device structure,only high turn-on voltages(>2.7)have been achieved for CsPbBrxl3-x LEDs.Moreover,this mix-halide system may suffer from severe spectra-shift under bias.In this report,CsPbBr_(x)I_(3-x)thin films featuring nano-sized crystallites are prepared by incorporating multiple ammonium ligands in a one-step spin-coating route.The multiple ammonium ligands constrain the growth of CsPbBr_(x)I_(3-x)nanograins.Such CsPbBr_(x)I_(3-x)thin films benefit from quantum confinement.The corresponding CsPbBr_(x)I_(3-x)LEDs,adopting a conventional LED structure of indium-doped tin oxide(ITO)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)/CsPbBr_(x)I_(3-x)/[6,6]-phenyl C61 butyric acid methyl ester(PCBM)/bathocuproine(BCP)/AI,emit pure-red color at Commission Internationale de I'eclairage(CIE)coordinates of(0.709,0.290),(0.711,0.289),etc.,which represent the highest color-purity for reported pure-red perovskite LEDs and meet the Rec.2020 requirement at CIE(0.708,0.292)very well.The CsPbBr_(x)I_(3-x)LED shows a low turn-on voltage of 1.6 V,maximum external quantum efficiency of 8.94%,high luminance of 2,859 cd·m^(-2),and good color stability under bias.
基金Project supported by the National Natural Science Foundation of China (Grant No.61376078)the Natural Science Foundation of Sichuan Province,China (Grant No.2022NSFSC0515)。
文摘A vertical junction barrier Schottky diode with a high-K/low-K compound dielectric structure is proposed and optimized to achieve a high breakdown voltage(BV).There is a discontinuity of the electric field at the interface of high-K and low-K layers due to the different dielectric constants of high-K and low-K dielectric layers.A new electric field peak is introduced in the n-type drift region of junction barrier Schottky diode(JBS),so the distribution of electric field in JBS becomes more uniform.At the same time,the effect of electric-power line concentration at the p-n junction interface is suppressed due to the effects of the high-K dielectric layer and an enhancement of breakdown voltage can be achieved.Numerical simulations demonstrate that GaN JBS with a specific on-resistance(R_(on,sp)) of 2.07 mΩ·cm^(2) and a BV of 4171 V which is 167% higher than the breakdown voltage of the common structure,resulting in a high figure-of-merit(FOM) of 8.6 GW/cm^(2),and a low turn-on voltage of 0.6 V.
基金supported by the Doctoral Start-Up Fund of Xi'an Polytechnic University,China(No.BS1126)the Project of Ministry of Education,Shanxi Province(No.12JK0975)
文摘Characteristics of the turn-on and turn-off voltage of avalanche p-n junctions were demonstrated and studied. As opposed to existing reports, the differences between the turn-on and turn-offvoltage cannot be neglected when the size of the p-n junction is in the order of microns. The difference increases inversely with the area of a junction, exerting significant influences on characterizing some parameters of devices composed of small avalanche junctions. Theoretical analyses show that the mechanism for the difference lies in the increase effect of the threshold multiplication factor at the turn-on voltage of a junction when the area of a junction decreases. Moreover, the "breakdown voltage" in the formula of the avalanche asymptotic current is, in essence, the avalanche turn-off voltage, and consequently, the traditional expression of the avalanche asymptotic current and the gain of a Geiger mode avalanche photodiode were modified.
基金supported by the National Natural Science Foundation of China (Grant Nos. U2141241, 62004099, 61921005,and 91850112)。
文摘By introducing a thin p-type layer between the Schottky metal and n-GaN layer, this work presents a Schottky-pn junction diode(SPND) configuration for the GaN rectifier fabrication. Specific unipolar carrier conduction characteristic is demonstrated by the verification of temperature-dependent current–voltage(I–V) tests and electroluminescence spectra.Meanwhile, apparently advantageous forward conduction properties as compared to the pn diode fabricated on the same wafer have been achieved, featuring a lower turn-on voltage of 0.82 V. Together with the analysis model established in the GaN SPND for a wide-range designable turn-on voltage, this work provides an alternative method to the GaN rectifier strategies besides the traditional solution.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61874149 and U20A20208)the Outstanding Youth Science and Technology Foundation of China(Grant No.2018-JCJQ-ZQ-060).
文摘A vertical GaN field-effect transistor with an integrated self-adapted channel diode(CD-FET)is proposed to improve the reverse conduction performance.It features a channel diode(CD)formed between a trench source on the insulator and a P-type barrier layer(PBL),together with a P-shield layer under the trench gate.At forward conduction,the CD is pinched off due to depletion effects caused by both the PBL and the metal-insulator-semiconductor structure from the trench source,without influencing the on-state characteristic of the CD-FET.At reverse conduction,the depletion region narrows and thus the CD turns on to achieve a very low turn-on voltage(V_(F)),preventing the inherent body diode from turning on.Meanwhile,the PBL and P-shield layer can modulate the electric field distribution to improve the off-state breakdown voltage(BV).Moreover,the P-shield not only shields the gate from a high electric field but also transforms part of C_(GD)to CGS so as to significantly reduce the gate charge(Q_(GD)),leading to a low switching loss(E_(switch)).Consequently,the proposed CD-FET achieves a low V_(F)of 1.65 V and a high BV of 1446 V,and V_(F),Q_(GD)and E_(switch)of the CD-FET are decreased by 49%,55%and 80%,respectively,compared with those of a conventional metal-oxide-semiconductor field-effect transistor(MOSFET).
基金supported in part by the Jiangsu Carbon Peak Carbon Neutralization Science and Technology Innovation Special Fund under Grant BE2022032-1National Natural Science Foundation of China under Grant 52277035, Grant 51937006 and Grant 51907028the “SEU Zhishan Young Scholars” Program of Southeast University。
文摘Inter-turn fault is a serious stator winding short-circuit fault of permanent magnet synchronous machine(PMSM). Once it occurs, it produces a huge short-circuit current that poses a great risk to the safe operation of PMSM. Thus, an inter-turn short-circuit fault(ITSCF) diagnosis method based on high frequency(HF) voltage residual is proposed in this paper with proper HF signal injection. First, the analytical models of PMSM after the ITSCF are deduced. Based on the model, the voltage residual at low frequency(LF) and HF can be obtained. It is revealed that the HF voltage residual has a stronger ITSCF detection capability compared to the LF voltage residual. To obtain optimal fault signature, a 3-phase symmetrical HF voltage is injected into the machine drive system, and the HF voltage residuals are extracted. The fault indicator is defined as the standard deviation of the 3-phase HF voltage residuals. The effectiveness of the proposed ITSCF diagnosis method is verified by experiments on a triple 3-phase PMSM. It is worth noting that no extra hardware equipment is required to implement the proposed method.
基金Project supported by the National Natural Science Foundation of China(No.61274080)the Postdoctoral Science Foundation of China(No.2013M541585)
文摘A novel trench field stop (FS) insulated gate bipolar transistor (IGBT) with a trench shorted anode (TSA) is proposed. By introducing a trench shorted anode, the TSA-FS-IGBT can obviously improve the breakdown voltage. As the simulation results show, the breakdown voltage is improved by a factor of 19.5% with a lower leakage current compared with the conventional FS-IGBT. The turn off time of the proposed structure is 50% lower than the conventional one with less than 9% voltage drop increased at a current density of 150 A/cm2. Additionally, there is no snapback observed. As a result, the TSA-FS-IGBT has a better trade-off relationship between the turn off loss and forward drop.
文摘采用HAT-CN/Cu Pc作为有机电致发光二极管(OLED)蓝光ADN器件的组合空穴注入层(HIL)。通过采用该组合HIL后,在保证器件电流效率不下降的情况下有效地降低器件的驱动电压。一方面,这是利用HAT-CN可以大幅提高Cu Pc薄膜的有序度,有效地降低Cu Pc HIL的电阻;另一方面是因为HAT-CN/Cu Pc可以实现空穴的有效注入。这两方面因素最终使得ADN蓝光器件的启亮电压降低至3.4 V,较采用Cu Pc HIL的ADN蓝光器件低0.5 V。
文摘IGBT with high switching speed is described based on the dynamic controlled anode- short,which incorpo- rates a normally- on,p- MOSFET controlled by the anode voltage indirectly.This device works just as normal when it is in on- state since the channel of the p- MOSFET is pinched- off.During the course of turning off,the channel of the p- MOSFET will prevent the injection of m inorities and introduce an extra access for the carriers to flow to the anode directly,which m akes the IGBT reach its off- state in a shorter time.The simulation results prove that the new structure can reduce the turn- off time by m ore than75 % compared with the normal one under the same break- down voltage and on- state perform ance.Only two more resistors are needed when using this structure,and the re- quirement of the drive circuits is just the sam e as normal.