Car following model is one of microscopic models for describing traffic flow. Through linear stability analysis, the neutral stability lines and the critical points are obtained for the different types of car followin...Car following model is one of microscopic models for describing traffic flow. Through linear stability analysis, the neutral stability lines and the critical points are obtained for the different types of car following models and two modified models. The singular perturbation method has been used to derive various nonlinear wave equations, such as the Kortewegde-Vries (KdV) equation and the modified Korteweg-de-Vries (mKdV) equation, which could describe different density waves occurring in traffic flows under certain conditions. These density waves are mainly employed to depict the formation of traffic jams in the congested traffic flow. The general soliton solutions are given for the different types of car following models, and the results have been used to the modified models efficiently.展开更多
基金supported by the National Basic Research Program of China (Grant No.2006CB705500)the National Natural Science Foundation of China (Grant Nos.10532060, 10602025, 10802042)the Natural Science Foundation of Ningbo (Grant No.2007A610050)
文摘Car following model is one of microscopic models for describing traffic flow. Through linear stability analysis, the neutral stability lines and the critical points are obtained for the different types of car following models and two modified models. The singular perturbation method has been used to derive various nonlinear wave equations, such as the Kortewegde-Vries (KdV) equation and the modified Korteweg-de-Vries (mKdV) equation, which could describe different density waves occurring in traffic flows under certain conditions. These density waves are mainly employed to depict the formation of traffic jams in the congested traffic flow. The general soliton solutions are given for the different types of car following models, and the results have been used to the modified models efficiently.