In this paper,a robust torque speed estimator(RTSE)for linear parameter changing(LPC)system is proposed and designed for an encoderless five-phase permanent magnet assisted synchronous reluctance motor(5-phase PMa-Syn...In this paper,a robust torque speed estimator(RTSE)for linear parameter changing(LPC)system is proposed and designed for an encoderless five-phase permanent magnet assisted synchronous reluctance motor(5-phase PMa-SynRM).This estimator is utilized for estimating the rotor speed and the load torque as well as can solve the speed sensor fault problem,as the feedback speed information is obtained directly from the virtual sensor.In addition,this technique is able to enhance the 5-phase PMa-SynRM performance by estimating the load torque for the real time compensation.The stability analysis of the proposed estimator is performed via Schur complement along with Lyapunov analysis.Furthermore,for improving the 5-phase PMa-SynRM performance,five super-twisting sliding mode controllers(ST-SMCs)are employed with providing a robust response without the impacts of high chattering problem.A super-twisting sliding mode speed controller(ST-SMSC)is employed for controlling the PMa-SynRM rotor speed,and four super-twisting sliding mode current controllers(ST-SMCCs)are employed for controlling the 5-phase PMa-SynRM currents.The stability analysis and the experimental results indicate the effectiveness along with feasibility of the proposed RTSE and the ST-SMSC with ST-SMCCs approach for a 750-W 5-phase PMa-SynRM under load disturbance,parameters variations,single open-phase fault,and adjacent two-phase open circuit fault conditions.展开更多
Iron loss and copper loss are the significant parts of electrical loss of machines,which are the major parts particularly under high frequency condition.High-speed permanent magnet synchronous machines(HS-PMSM)have th...Iron loss and copper loss are the significant parts of electrical loss of machines,which are the major parts particularly under high frequency condition.High-speed permanent magnet synchronous machines(HS-PMSM)have the benefits of high power density,high efficiency and wide speed range.Which causes the calculation for iron loss and copper loss in whole operating range complex.By analyzing the components and influencing factors of iron loss and copper loss in stator,we have deduced the calculation formula of iron loss and copper loss in whole operating range based on the analytical solution and finite element approach(EFA)solution.According to the calculation solution,taking the influence of operating temperature on the iron loss and copper loss into account,we propose a temperature correction factor and establish the calculation method for the iron loss and copper loss with temperature influences.Finally,by the conductor transposition,we restrain the circulating current under high-frequency operating condition.展开更多
文摘In this paper,a robust torque speed estimator(RTSE)for linear parameter changing(LPC)system is proposed and designed for an encoderless five-phase permanent magnet assisted synchronous reluctance motor(5-phase PMa-SynRM).This estimator is utilized for estimating the rotor speed and the load torque as well as can solve the speed sensor fault problem,as the feedback speed information is obtained directly from the virtual sensor.In addition,this technique is able to enhance the 5-phase PMa-SynRM performance by estimating the load torque for the real time compensation.The stability analysis of the proposed estimator is performed via Schur complement along with Lyapunov analysis.Furthermore,for improving the 5-phase PMa-SynRM performance,five super-twisting sliding mode controllers(ST-SMCs)are employed with providing a robust response without the impacts of high chattering problem.A super-twisting sliding mode speed controller(ST-SMSC)is employed for controlling the PMa-SynRM rotor speed,and four super-twisting sliding mode current controllers(ST-SMCCs)are employed for controlling the 5-phase PMa-SynRM currents.The stability analysis and the experimental results indicate the effectiveness along with feasibility of the proposed RTSE and the ST-SMSC with ST-SMCCs approach for a 750-W 5-phase PMa-SynRM under load disturbance,parameters variations,single open-phase fault,and adjacent two-phase open circuit fault conditions.
基金This work was supported by the National Natural Science Foundation of China(51677144).
文摘Iron loss and copper loss are the significant parts of electrical loss of machines,which are the major parts particularly under high frequency condition.High-speed permanent magnet synchronous machines(HS-PMSM)have the benefits of high power density,high efficiency and wide speed range.Which causes the calculation for iron loss and copper loss in whole operating range complex.By analyzing the components and influencing factors of iron loss and copper loss in stator,we have deduced the calculation formula of iron loss and copper loss in whole operating range based on the analytical solution and finite element approach(EFA)solution.According to the calculation solution,taking the influence of operating temperature on the iron loss and copper loss into account,we propose a temperature correction factor and establish the calculation method for the iron loss and copper loss with temperature influences.Finally,by the conductor transposition,we restrain the circulating current under high-frequency operating condition.