High Temperature Steam Electrolysis (HTSE) through a solid oxide electrolytic cell (SOEC) has been receiving increasing research and development attention worldwide because of its high conversion efficiency (about 45%...High Temperature Steam Electrolysis (HTSE) through a solid oxide electrolytic cell (SOEC) has been receiving increasing research and development attention worldwide because of its high conversion efficiency (about 45%-59%) and its potential usage for large-scale production of hydrogen. The mechanism, composition, structure, and developing challenges of SOEC are summarized. Current situation, key materials, and core technologies of SOEC (solid oxide electrolytic cell) in HTSE are re- viewed, and the prospect of HTSE future application in advanced energy fields is proposed. In addition, the recent research achievements and study progress of HTSE in Tsinghua University are also intro- duced and presented.展开更多
The interaction of hydrogen with interface between the precipitates and the martensitie matrix in 18Ni maraging steel has been studied by means of thermal evolution hydrogen technique us- ing gas chromatograph as hydr...The interaction of hydrogen with interface between the precipitates and the martensitie matrix in 18Ni maraging steel has been studied by means of thermal evolution hydrogen technique us- ing gas chromatograph as hydrogen detector.An evolution rate peak has been observed at 451 K.The height of the peak relates to the amount and distribution of the precipitates.The activation energy for hydrogen escaping from the trap sites is 23.2 kJ/mol.展开更多
The true stress-true strain curves of Ti-6Al-2Zr-IMO-IV alloy with hydrogen were obtained by hot compression test. The microstructures of the alloy before and after thermo-compression were observed. The apparent activ...The true stress-true strain curves of Ti-6Al-2Zr-IMO-IV alloy with hydrogen were obtained by hot compression test. The microstructures of the alloy before and after thermo-compression were observed. The apparent activation energies of deformation were calculated for the alloy with and without hydrogen. The behavior and mechanism of deformation for hydrogenated Ti-6A1-2Zr-IMO-IV alloy at high temperature were analyzed. The relationship between hydrogenation time and hydrogen content at 800 ℃ can be expressed as the equation: CH(t)=1.2-1.2exp(-t/120). The true stress-true strain curves of hot compression for Ti-6Al-2Zr-IMO-IV alloy with hydrogen first move down and then move up as hydrogen content increases. Appropriate hydrogen content can reduce the peak of flow stress to minimal value. The apparent activation energies of deformation of the alloy with 0.47% hydrogen content and without hydrogen were calculated as 140 kJ·mol^-1 and 390 kJ-mol^-1, respectively, at 800 ℃ and at strain rate 8.3×10^4 s^-1. The apparent activation energy of deformation increases when the strain rate enhances from 8.3×10^-4 s^-1 to 8.3×10^-2 s^-1.展开更多
基金Supported by the specialized research fund for the Doctoral Program of Higher Education (Grant No. 20070003033)
文摘High Temperature Steam Electrolysis (HTSE) through a solid oxide electrolytic cell (SOEC) has been receiving increasing research and development attention worldwide because of its high conversion efficiency (about 45%-59%) and its potential usage for large-scale production of hydrogen. The mechanism, composition, structure, and developing challenges of SOEC are summarized. Current situation, key materials, and core technologies of SOEC (solid oxide electrolytic cell) in HTSE are re- viewed, and the prospect of HTSE future application in advanced energy fields is proposed. In addition, the recent research achievements and study progress of HTSE in Tsinghua University are also intro- duced and presented.
文摘The interaction of hydrogen with interface between the precipitates and the martensitie matrix in 18Ni maraging steel has been studied by means of thermal evolution hydrogen technique us- ing gas chromatograph as hydrogen detector.An evolution rate peak has been observed at 451 K.The height of the peak relates to the amount and distribution of the precipitates.The activation energy for hydrogen escaping from the trap sites is 23.2 kJ/mol.
基金supported by the National Natural Science Foundation of China(No.50671028)
文摘The true stress-true strain curves of Ti-6Al-2Zr-IMO-IV alloy with hydrogen were obtained by hot compression test. The microstructures of the alloy before and after thermo-compression were observed. The apparent activation energies of deformation were calculated for the alloy with and without hydrogen. The behavior and mechanism of deformation for hydrogenated Ti-6A1-2Zr-IMO-IV alloy at high temperature were analyzed. The relationship between hydrogenation time and hydrogen content at 800 ℃ can be expressed as the equation: CH(t)=1.2-1.2exp(-t/120). The true stress-true strain curves of hot compression for Ti-6Al-2Zr-IMO-IV alloy with hydrogen first move down and then move up as hydrogen content increases. Appropriate hydrogen content can reduce the peak of flow stress to minimal value. The apparent activation energies of deformation of the alloy with 0.47% hydrogen content and without hydrogen were calculated as 140 kJ·mol^-1 and 390 kJ-mol^-1, respectively, at 800 ℃ and at strain rate 8.3×10^4 s^-1. The apparent activation energy of deformation increases when the strain rate enhances from 8.3×10^-4 s^-1 to 8.3×10^-2 s^-1.