As an important contributor to the habitability of our planet, the oxygen cycle is interconnected with the emergence and evolution of complex life and is also the basis to establish Earth system science. Investigating...As an important contributor to the habitability of our planet, the oxygen cycle is interconnected with the emergence and evolution of complex life and is also the basis to establish Earth system science. Investigating the global oxygen cycle provides valuable information on the evolution of the Earth system, the habitability of our planet in the geologic past, and the future of human life. Numerous investigations have expanded our knowledge of the oxygen cycle in the fields of geology,geochemistry, geobiology, and atmospheric science. However, these studies were conducted separately, which has led to onesided understandings of this critical scientific issue and an incomplete synthesis of the interactions between the different spheres of the Earth system. This review presents a five-sphere coupled model of the Earth system and clarifies the core position of the oxygen cycle in Earth system science. Based on previous research, this review comprehensively summarizes the evolution of the oxygen cycle in geological time, with a special focus on the Great Oxidation Event(GOE) and the mass extinctions, as well as the possible connections between the oxygen content and biological evolution. The possible links between the oxygen cycle and biodiversity in geologic history have profound implications for exploring the habitability of Earth in history and guiding the future of humanity. Since the Anthropocene, anthropogenic activities have gradually steered the Earth system away from its established trajectory and had a powerful impact on the oxygen cycle. The human-induced disturbance of the global oxygen cycle, if not controlled, could greatly reduce the habitability of our planet.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 41888101, 41521004 & 41991231)the China University Research Talents Recruitment Program (111 Projects, Grant No. B13045)。
文摘As an important contributor to the habitability of our planet, the oxygen cycle is interconnected with the emergence and evolution of complex life and is also the basis to establish Earth system science. Investigating the global oxygen cycle provides valuable information on the evolution of the Earth system, the habitability of our planet in the geologic past, and the future of human life. Numerous investigations have expanded our knowledge of the oxygen cycle in the fields of geology,geochemistry, geobiology, and atmospheric science. However, these studies were conducted separately, which has led to onesided understandings of this critical scientific issue and an incomplete synthesis of the interactions between the different spheres of the Earth system. This review presents a five-sphere coupled model of the Earth system and clarifies the core position of the oxygen cycle in Earth system science. Based on previous research, this review comprehensively summarizes the evolution of the oxygen cycle in geological time, with a special focus on the Great Oxidation Event(GOE) and the mass extinctions, as well as the possible connections between the oxygen content and biological evolution. The possible links between the oxygen cycle and biodiversity in geologic history have profound implications for exploring the habitability of Earth in history and guiding the future of humanity. Since the Anthropocene, anthropogenic activities have gradually steered the Earth system away from its established trajectory and had a powerful impact on the oxygen cycle. The human-induced disturbance of the global oxygen cycle, if not controlled, could greatly reduce the habitability of our planet.