Nitriding of the surface in martensitic stainless steels is commonly carried out to improve their wear resistance. The process of plasma nitriding in stainless steel is influenced by two mechanisms: physical diffusion...Nitriding of the surface in martensitic stainless steels is commonly carried out to improve their wear resistance. The process of plasma nitriding in stainless steel is influenced by two mechanisms: physical diffusion through the surface and chemical gas-metal reaction. The inner nitriding interaction involves the simultaneous penetration and formation of a solid solution, as well as the interaction of nitrogen with specific alloying elements, resulting in the development of homogeneous and heterogeneous structures. Our study concludes that the observed intergranular hydrogen embrittlement and crack formation during the surface nitridation process of AMS 5719 martensite alloy steel can be attributed to the ammonium concentration of approximately 50% at a temperature of 530˚C.展开更多
通过分析某型航空发动机涡轮叶片表面涂覆的Al Si Y涂层使用环境和防护要求,针对Al Si Y涂层进行氧化和非氧化的对比试验,以及模拟汗液的常温抗腐蚀性试验,并在模拟试验后对试样叶片进行发动机不同温度段的高温抗氧化性试验,检测高温抗...通过分析某型航空发动机涡轮叶片表面涂覆的Al Si Y涂层使用环境和防护要求,针对Al Si Y涂层进行氧化和非氧化的对比试验,以及模拟汗液的常温抗腐蚀性试验,并在模拟试验后对试样叶片进行发动机不同温度段的高温抗氧化性试验,检测高温抗氧化性试验前后试样叶片的失重情况,从理论、试验、实际应用等三个方面进行评估,针对Al Si Y涂层进行氧化处理防护的可行性研究。展开更多
The effects of surface energy on phase change of water vapor at initial stage of frost growth were studied to find an effective method of restraining frost growth.The mechanism of restraining frost growth by low energ...The effects of surface energy on phase change of water vapor at initial stage of frost growth were studied to find an effective method of restraining frost growth.The mechanism of restraining frost growth by low energy surface(bigger contact angle) was analyzed based on crystal growth theory.Then,the phase change of water vapor and the process of frost growth on the copper and wax energy surfaces were observed using microscope.The results indicate that it is difficult for wax surface(low energy surface),on which there are still water droplets at 100 s,to form critical embryo,so frost growth can be restrained in a way.Water formation,droplet growth,ice formation and dendritic ice growth processes happen on both surfaces,ordinally.But the ice beads,with larger average diameter and sparse distribution on the wax surface,form later(at about 300 s) than that on the copper surface,and the dendritic ice also appears later.All of these support that ice crystal formation and dendritic crystal growth at initial stage of frost growth can be retarded on the low energy surface.展开更多
文摘Nitriding of the surface in martensitic stainless steels is commonly carried out to improve their wear resistance. The process of plasma nitriding in stainless steel is influenced by two mechanisms: physical diffusion through the surface and chemical gas-metal reaction. The inner nitriding interaction involves the simultaneous penetration and formation of a solid solution, as well as the interaction of nitrogen with specific alloying elements, resulting in the development of homogeneous and heterogeneous structures. Our study concludes that the observed intergranular hydrogen embrittlement and crack formation during the surface nitridation process of AMS 5719 martensite alloy steel can be attributed to the ammonium concentration of approximately 50% at a temperature of 530˚C.
文摘通过分析某型航空发动机涡轮叶片表面涂覆的Al Si Y涂层使用环境和防护要求,针对Al Si Y涂层进行氧化和非氧化的对比试验,以及模拟汗液的常温抗腐蚀性试验,并在模拟试验后对试样叶片进行发动机不同温度段的高温抗氧化性试验,检测高温抗氧化性试验前后试样叶片的失重情况,从理论、试验、实际应用等三个方面进行评估,针对Al Si Y涂层进行氧化处理防护的可行性研究。
基金Project(50376052) supported by the National Natural Science Foundation of ChinaProject(307013) supported by the Key Project of Chinese Ministry of EducationProject(2008BAJ12B02) supported by the National Science and Technology Pillar Program in the 11th Five-Year Plan Period
文摘The effects of surface energy on phase change of water vapor at initial stage of frost growth were studied to find an effective method of restraining frost growth.The mechanism of restraining frost growth by low energy surface(bigger contact angle) was analyzed based on crystal growth theory.Then,the phase change of water vapor and the process of frost growth on the copper and wax energy surfaces were observed using microscope.The results indicate that it is difficult for wax surface(low energy surface),on which there are still water droplets at 100 s,to form critical embryo,so frost growth can be restrained in a way.Water formation,droplet growth,ice formation and dendritic ice growth processes happen on both surfaces,ordinally.But the ice beads,with larger average diameter and sparse distribution on the wax surface,form later(at about 300 s) than that on the copper surface,and the dendritic ice also appears later.All of these support that ice crystal formation and dendritic crystal growth at initial stage of frost growth can be retarded on the low energy surface.