A micro- and mesoporous carbon obtained from cherry pit waste and activated with HBPO4 acid has been studied as the sulfur host for Li/S batteries. The carbon has a high specific surface area of 1,662 m2·g-1 (S...A micro- and mesoporous carbon obtained from cherry pit waste and activated with HBPO4 acid has been studied as the sulfur host for Li/S batteries. The carbon has a high specific surface area of 1,662 m2·g-1 (SBET) and micropore and mesopore volumes of 0.57 and 0.40 cm3·g-1, respectively. The S/C composite, with a sulfur content of 57% deposited by the disproportionate reaction of a SaO2- solution in an acid medium without an additional heating step above the S melting point, delivers an initial specific capacity of 1,148 mah·g-1 at a current of C/16. It also has a high capacity retention of 915 mAh·g-1 after 100 cycles and a Coulombic efficiency close to 100%. The good performance of the composite was also observed under higher current rates and long-term cycling tests. The capacities delivered by the cell after 200 cycles were 707 and 410 mAh·g-1 at C/2 and 1C (1C = 1,675 mA·g-1), respectively, maintaining the high Coulombic efficiency. The overall electrochemical response of this carbon as the sulfur matrix is among the best reported so far among the other biomass-derived carbons, probably because of the micro- and mesopore system formed upon activation.展开更多
Extensive growth in the developing countries due to infrastructure development is resulting into massive consumption of concrete thereby increasing the demand on concrete materials. Quite large amounts of fine aggrega...Extensive growth in the developing countries due to infrastructure development is resulting into massive consumption of concrete thereby increasing the demand on concrete materials. Quite large amounts of fine aggregates are required for concrete in developing countries thus shortages of quality river sand is putting pressure on availability of fine aggregates. To fulfill the high demand of fine aggregates, a search for alternative materials is in process. Stone crushing and processing industry is a large industry which generates large amounts of stone dust and slurry which is a waste produced from this process. Tons of such waste generated has no useful purpose except as landfill material. Some preliminary studies have been conducted into use of marble/ limestone waste for use in concrete [1] [2].?This study aims at using stone dust as partial replacement of sand in concrete to observe its effects on workability and other mechanical properties. This would result in useful consumption of this waste product thereby eliminating environmental issues related to its disposal. Partial replacement of 10% and 20% sand replacement with stone dust is carried out with the use of self-compacting concrete with blended cement. Blended cement used contains 50% rice husk ash and 50% Portland cement. Such high strength SCC with blended cement containing 50% rice husk ash and 50% Portland cement has already been tested to provide better quality concrete [3]. Wide ranging investigations covering most aspects of mechanical behavior and permeability were carried out for various mixes for compressive strengths of 60?MPa & 80?MPa. Compressive strengths of high strength SCC with blended cements and 10% and 20% replacement of sand with stone dust for 60?MPa and 80?MPa were observed to be higher by about 10% to 13% than the control specimen. Higher elastic moduli and reduced permeability were observed along with better sulphate and acid resistance. Better strengths and improved durability of such high strength SCC make it a more acceptabl展开更多
The paper presents a new method for preventing dust pollution in stone quarries using naphthenic wastes of petroleum refineries. The method is based on the use of naphthenate solutions of metals as wetting agents to m...The paper presents a new method for preventing dust pollution in stone quarries using naphthenic wastes of petroleum refineries. The method is based on the use of naphthenate solutions of metals as wetting agents to minimize dust release during stone-cutting process. The studies were carried out in one of the stone quarries of the Absheron peninsula. Initial experiments were conducted by using sodium-naphthenate (RCOONa) solution from alkali wastes of refineries. The results have shown that the use of RCOONa as wetting agent considerably reduces both dust pollution and energy consumption of the used equipment, while increasing the service life of stone-cutting saw. A series of researches were carried out with cupric naphthenate (RCOOCu) to further use the obtained dust-naphthenate mixture in agriculture. The effect of various parameters on the quality of the obtained product was investigated. The investigations have revealed that maximal dust reduction and the good quality of dust-naphthenate mixture were observed with 0.13% solution of RCOOCu at 11° - 13° angle of slope and 100 - 180 rotation∕min. intensity of conveyer.展开更多
文摘A micro- and mesoporous carbon obtained from cherry pit waste and activated with HBPO4 acid has been studied as the sulfur host for Li/S batteries. The carbon has a high specific surface area of 1,662 m2·g-1 (SBET) and micropore and mesopore volumes of 0.57 and 0.40 cm3·g-1, respectively. The S/C composite, with a sulfur content of 57% deposited by the disproportionate reaction of a SaO2- solution in an acid medium without an additional heating step above the S melting point, delivers an initial specific capacity of 1,148 mah·g-1 at a current of C/16. It also has a high capacity retention of 915 mAh·g-1 after 100 cycles and a Coulombic efficiency close to 100%. The good performance of the composite was also observed under higher current rates and long-term cycling tests. The capacities delivered by the cell after 200 cycles were 707 and 410 mAh·g-1 at C/2 and 1C (1C = 1,675 mA·g-1), respectively, maintaining the high Coulombic efficiency. The overall electrochemical response of this carbon as the sulfur matrix is among the best reported so far among the other biomass-derived carbons, probably because of the micro- and mesopore system formed upon activation.
文摘Extensive growth in the developing countries due to infrastructure development is resulting into massive consumption of concrete thereby increasing the demand on concrete materials. Quite large amounts of fine aggregates are required for concrete in developing countries thus shortages of quality river sand is putting pressure on availability of fine aggregates. To fulfill the high demand of fine aggregates, a search for alternative materials is in process. Stone crushing and processing industry is a large industry which generates large amounts of stone dust and slurry which is a waste produced from this process. Tons of such waste generated has no useful purpose except as landfill material. Some preliminary studies have been conducted into use of marble/ limestone waste for use in concrete [1] [2].?This study aims at using stone dust as partial replacement of sand in concrete to observe its effects on workability and other mechanical properties. This would result in useful consumption of this waste product thereby eliminating environmental issues related to its disposal. Partial replacement of 10% and 20% sand replacement with stone dust is carried out with the use of self-compacting concrete with blended cement. Blended cement used contains 50% rice husk ash and 50% Portland cement. Such high strength SCC with blended cement containing 50% rice husk ash and 50% Portland cement has already been tested to provide better quality concrete [3]. Wide ranging investigations covering most aspects of mechanical behavior and permeability were carried out for various mixes for compressive strengths of 60?MPa & 80?MPa. Compressive strengths of high strength SCC with blended cements and 10% and 20% replacement of sand with stone dust for 60?MPa and 80?MPa were observed to be higher by about 10% to 13% than the control specimen. Higher elastic moduli and reduced permeability were observed along with better sulphate and acid resistance. Better strengths and improved durability of such high strength SCC make it a more acceptabl
文摘The paper presents a new method for preventing dust pollution in stone quarries using naphthenic wastes of petroleum refineries. The method is based on the use of naphthenate solutions of metals as wetting agents to minimize dust release during stone-cutting process. The studies were carried out in one of the stone quarries of the Absheron peninsula. Initial experiments were conducted by using sodium-naphthenate (RCOONa) solution from alkali wastes of refineries. The results have shown that the use of RCOONa as wetting agent considerably reduces both dust pollution and energy consumption of the used equipment, while increasing the service life of stone-cutting saw. A series of researches were carried out with cupric naphthenate (RCOOCu) to further use the obtained dust-naphthenate mixture in agriculture. The effect of various parameters on the quality of the obtained product was investigated. The investigations have revealed that maximal dust reduction and the good quality of dust-naphthenate mixture were observed with 0.13% solution of RCOOCu at 11° - 13° angle of slope and 100 - 180 rotation∕min. intensity of conveyer.