BACKGROUND: Cancer of the pancreas is the fourth leading cause of cancer death in industrialized countries. In malignancy, actively proliferating cells may be effectively targeted and killed by anti-cancer therapies, ...BACKGROUND: Cancer of the pancreas is the fourth leading cause of cancer death in industrialized countries. In malignancy, actively proliferating cells may be effectively targeted and killed by anti-cancer therapies, but stem cells may survive and support re-growth of the tumor. Thus, new strategies for the treatment of cancer clearly will also have to target cancer stem cells. The goal of the present study was to determine whether pancreatic carcinoma cell growth may be driven by a subpopulation of cancer stem cells. Because previous data implicated ABCG2 and CD133 as stem cell markers in hematopoietic and neural stem/progenitor cells, we analyzed the expression of these two proteins in pancreatic carcinoma cell lines. METHODS: Five established pancreatic adenocarcinoma cell lines were analyzed. Total RNA was isolated and real- time RT-PCR was performed to determine the expression of ABCG2 and CD133. Surface expression of ABCG2 and CD133 was analyzed by flow cytometric analysis. RESULTS: All pancreatic carcinoma cell lines tested expressed significantly higher levels of ABCG2 than non-malignant fibroblasts or two other malignant non- pancreatic cell lines, i.e., SaOS2 osteosarcoma and SKOV3 ovarian cancer. Elevated CD133 expression was found in two out of five pancreatic carcinoma cell lines tested. Using flow cytometric analysis we confirmed surface expression of ABCG2 in all five lines. Yet, CD133 surface expression was detectable in the two cell lines, A818-6 and PancTu1, which exhibited higher mRNA levels.CONCLUSIONS: Two stem cell markers, ABCG2 and CD133 are expressed in pancreatic carcinoma cell lines. ABCG2 and/or CD133 positive cells may represent subpopulation of putative cancer stem cells also in this malignancy. Because cancer stem cells are thought to be responsible for tumor initiation and its recurrence after an initial response to chemotherapy, they may be a very promising target for new drug developments.展开更多
Cancer stem cells (CSCs) or tumor initiating cells are rare cells that are able to establish a tumor or metastasis. Identification of those CSCs is, however, cumbersome even in established cell lines. Several cancer s...Cancer stem cells (CSCs) or tumor initiating cells are rare cells that are able to establish a tumor or metastasis. Identification of those CSCs is, however, cumbersome even in established cell lines. Several cancer stem cell markers were reported to be expressed by ovarian cancer. Those cancer stem cells are gifted with lower vulnerability to irradiation and cytostatic drugs explaining the high incidence of recurrence after treatment. A variety of different cancer stem cell markers were described for epithelial tumors. Also, cancer cell lines were assessed for stem cell markers with no common denominator. The expression of CD24, CD44, CD117, CD133, ABCG2, ALDH was determined for cells from 22 patients. Ovarian cancer cells were collected from ascites. Part of the tumor cells were analyzed immediately and stained for the above mentioned cancer stem cell markers. The remainder of the cells was cultured for several weeks using standard stem cell culture conditions. We observed a large variety in expression of putative stem cell markers for primary tumors. After two weeks of culture spheres were seen in several cultures, indicative for cancer stem cells, though not all patients’ cells were able to form spheres. Our data show for the first time the heterogeneity in marker display in primary tumors. Also for the cultured cells stem cell markers were determined. None of the stem cell markers was expressed by all patients’ cells. No correlation with tumor type was demonstrated. The complexity of expression challenges the isolation of cancer stem展开更多
文摘BACKGROUND: Cancer of the pancreas is the fourth leading cause of cancer death in industrialized countries. In malignancy, actively proliferating cells may be effectively targeted and killed by anti-cancer therapies, but stem cells may survive and support re-growth of the tumor. Thus, new strategies for the treatment of cancer clearly will also have to target cancer stem cells. The goal of the present study was to determine whether pancreatic carcinoma cell growth may be driven by a subpopulation of cancer stem cells. Because previous data implicated ABCG2 and CD133 as stem cell markers in hematopoietic and neural stem/progenitor cells, we analyzed the expression of these two proteins in pancreatic carcinoma cell lines. METHODS: Five established pancreatic adenocarcinoma cell lines were analyzed. Total RNA was isolated and real- time RT-PCR was performed to determine the expression of ABCG2 and CD133. Surface expression of ABCG2 and CD133 was analyzed by flow cytometric analysis. RESULTS: All pancreatic carcinoma cell lines tested expressed significantly higher levels of ABCG2 than non-malignant fibroblasts or two other malignant non- pancreatic cell lines, i.e., SaOS2 osteosarcoma and SKOV3 ovarian cancer. Elevated CD133 expression was found in two out of five pancreatic carcinoma cell lines tested. Using flow cytometric analysis we confirmed surface expression of ABCG2 in all five lines. Yet, CD133 surface expression was detectable in the two cell lines, A818-6 and PancTu1, which exhibited higher mRNA levels.CONCLUSIONS: Two stem cell markers, ABCG2 and CD133 are expressed in pancreatic carcinoma cell lines. ABCG2 and/or CD133 positive cells may represent subpopulation of putative cancer stem cells also in this malignancy. Because cancer stem cells are thought to be responsible for tumor initiation and its recurrence after an initial response to chemotherapy, they may be a very promising target for new drug developments.
文摘Cancer stem cells (CSCs) or tumor initiating cells are rare cells that are able to establish a tumor or metastasis. Identification of those CSCs is, however, cumbersome even in established cell lines. Several cancer stem cell markers were reported to be expressed by ovarian cancer. Those cancer stem cells are gifted with lower vulnerability to irradiation and cytostatic drugs explaining the high incidence of recurrence after treatment. A variety of different cancer stem cell markers were described for epithelial tumors. Also, cancer cell lines were assessed for stem cell markers with no common denominator. The expression of CD24, CD44, CD117, CD133, ABCG2, ALDH was determined for cells from 22 patients. Ovarian cancer cells were collected from ascites. Part of the tumor cells were analyzed immediately and stained for the above mentioned cancer stem cell markers. The remainder of the cells was cultured for several weeks using standard stem cell culture conditions. We observed a large variety in expression of putative stem cell markers for primary tumors. After two weeks of culture spheres were seen in several cultures, indicative for cancer stem cells, though not all patients’ cells were able to form spheres. Our data show for the first time the heterogeneity in marker display in primary tumors. Also for the cultured cells stem cell markers were determined. None of the stem cell markers was expressed by all patients’ cells. No correlation with tumor type was demonstrated. The complexity of expression challenges the isolation of cancer stem