In this paper, we propose some distance measures between type-2 fuzzy sets, and also a new family of utmost distance measures are presented. Several properties of differ- ent proposed distance measures have been intro...In this paper, we propose some distance measures between type-2 fuzzy sets, and also a new family of utmost distance measures are presented. Several properties of differ- ent proposed distance measures have been introduced. Also, we have introduced a new ranking method for the ordering of type-2 fuzzy sets based on the proposed distance measure. The proposed ranking method satisfies the reasonable prop- erties for the ordering of fuzzy quantities. Some properties such as robustness, order relation have been presented. Lim- itations of existing ranking methods have been studied. Fur- ther for practical use, a new method for selecting the best alternative, for group decision making problems is proposed. This method is illustrated with a numerical example.展开更多
Fuzzy regression provides more approaches for us to deal with imprecise or vague problems. Traditional fuzzy regression is established on triangular fuzzy numbers, which can be represented by trapezoidal numbers. The ...Fuzzy regression provides more approaches for us to deal with imprecise or vague problems. Traditional fuzzy regression is established on triangular fuzzy numbers, which can be represented by trapezoidal numbers. The independent variables, coefficients of independent variables and dependent variable in the regression model are fuzzy numbers in different times and TW, the shape preserving operator, is the only T-norm which induces a shape preserving multiplication of LL-type of fuzzy numbers. So, in this paper, we propose a new fuzzy regression model based on LL-type of trapezoidal fuzzy numbers and TW. Firstly, we introduce the basic fuzzy set theories, the basic arithmetic propositions of the shape preserving operator and a new distance measure between trapezoidal numbers. Secondly, we investigate the specific model algorithms for FIFCFO model (fuzzy input-fuzzy coefficient-fuzzy output model) and introduce three advantages of fit criteria, Error Index, Similarity Measure and Distance Criterion. Thirdly, we use a design set and two reference sets to make a comparison between our proposed model and the reference models and determine their goodness with the above three criteria. Finally, we draw the conclusion that our proposed model is reasonable and has better prediction accuracy, but short of robust, comparing to the reference models by the three goodness of fit criteria. So, we can expand our traditional fuzzy regression model to our proposed new model.展开更多
The fundamental principle for differentiating water masses is a strict consideration of their relative "interior homogeneity" and obvious "exterior differences" with others in characteristics. The ...The fundamental principle for differentiating water masses is a strict consideration of their relative "interior homogeneity" and obvious "exterior differences" with others in characteristics. The conceptions of water type, water mass and water system are dealt with on the basis of the theory of fuzzy sets. A proposal to apply the theory of fuzzy sets to define the water mass and its core, independent area, boundary and mixing area is put forward.As an example, the membership function of the surface water masses in the Yellow Sea and East China Sea in August, 1979, are considered. Their cores, independent areas, boundaries, mixing areas and the approximation degrees between different water masses are calculated respectively. The water masses are ranged according to their fuzzy degrees.展开更多
In a special case of type-2 fuzzy logic systems (FLS), i.e. geometric inteIval type-2 fuzzy logic systems (GIT-2FLS), the crisp output is obtained by computing the geometric center of footprint of uncertainly (FO...In a special case of type-2 fuzzy logic systems (FLS), i.e. geometric inteIval type-2 fuzzy logic systems (GIT-2FLS), the crisp output is obtained by computing the geometric center of footprint of uncertainly (FOU) without type-reduction, but the defuzzifying method acts against the corner concepts of type-2 fuzzy sets in some cases. In this paper, a PSO type-reduction method for GIT-2FLS based on the particle swarm optimization (PSO) algorithm is presented. With the PSO type-reduction, the inference principle of geometric interval FLS operating on the continuous domain is consistent with that of traditional interval type-2 FLS operating on the discrete domain. With comparative experiments, it is proved that the PSO type-reduction exhibits good performance, and is a satisfactory complement for the theory of GIT-2FLS.展开更多
Due to using the fuzzy clustering algorithm,the accuracy of image segmentation is not high enough.So one hybrid clustering algorithm combined with intuitionistic fuzzy factor and local spatial information is proposed....Due to using the fuzzy clustering algorithm,the accuracy of image segmentation is not high enough.So one hybrid clustering algorithm combined with intuitionistic fuzzy factor and local spatial information is proposed.Experimental results show that the proposed algorithm is superior to other methods in image segmentation accuracy and improves the robustness of the algorithm.展开更多
采用集合论的方法给出了单位模糊集合和二型模糊集合及其在一点的限制等定义,使得二型模糊集合更易于理解.通过定义嵌入单位模糊集合来描述一般二型模糊集合,并给出离散、半连通二型模糊集合的表达式.根据论域、主隶属度及隶属函数的特...采用集合论的方法给出了单位模糊集合和二型模糊集合及其在一点的限制等定义,使得二型模糊集合更易于理解.通过定义嵌入单位模糊集合来描述一般二型模糊集合,并给出离散、半连通二型模糊集合的表达式.根据论域、主隶属度及隶属函数的特性将二型模糊集合分为四种类型:离散、半连通、连通及复合型,并根据连通的特点将连通二型模糊集合分为单连通及多连通两类.利用支集的闭包(Closure of support,CoS)划分法表述主隶属度及区间二型模糊集合.提出了CoS二、三次划分法分别来表述单、复连通二型模糊集合,并使每一个子区域的上下边界及次隶属函数在该子区域上的限制分别具有相同的解析表述式.最后,探讨了二型模糊集合在一点的限制、主隶属度、支集、嵌入单位模糊集合之间的关系.展开更多
This paper uses Gaussian interval type-2 fuzzy se theory on historical traffic volume data processing to obtain a 24-hour prediction of traffic volume with high precision. A K-means clustering method is used in this p...This paper uses Gaussian interval type-2 fuzzy se theory on historical traffic volume data processing to obtain a 24-hour prediction of traffic volume with high precision. A K-means clustering method is used in this paper to get 5 minutes traffic volume variation as input data for the Gaussian interval type-2 fuzzy sets which can reflect the distribution of historical traffic volume in one statistical period. Moreover, the cluster with the largest collection of data obtained by K-means clustering method is calculated to get the key parameters of type-2 fuzzy sets, mean and standard deviation of the Gaussian membership function.Using the range of data as the input of Gaussian interval type-2 fuzzy sets leads to the range of traffic volume forecasting output with the ability of describing the possible range of the traffic volume as well as the traffic volume prediction data with high accuracy. The simulation results show that the average relative error is reduced to 8% based on the combined K-means Gaussian interval type-2 fuzzy sets forecasting method. The fluctuation range in terms of an upper and a lower forecasting traffic volume completely envelopes the actual traffic volume and reproduces the fluctuation range of traffic flow.展开更多
文摘In this paper, we propose some distance measures between type-2 fuzzy sets, and also a new family of utmost distance measures are presented. Several properties of differ- ent proposed distance measures have been introduced. Also, we have introduced a new ranking method for the ordering of type-2 fuzzy sets based on the proposed distance measure. The proposed ranking method satisfies the reasonable prop- erties for the ordering of fuzzy quantities. Some properties such as robustness, order relation have been presented. Lim- itations of existing ranking methods have been studied. Fur- ther for practical use, a new method for selecting the best alternative, for group decision making problems is proposed. This method is illustrated with a numerical example.
文摘Fuzzy regression provides more approaches for us to deal with imprecise or vague problems. Traditional fuzzy regression is established on triangular fuzzy numbers, which can be represented by trapezoidal numbers. The independent variables, coefficients of independent variables and dependent variable in the regression model are fuzzy numbers in different times and TW, the shape preserving operator, is the only T-norm which induces a shape preserving multiplication of LL-type of fuzzy numbers. So, in this paper, we propose a new fuzzy regression model based on LL-type of trapezoidal fuzzy numbers and TW. Firstly, we introduce the basic fuzzy set theories, the basic arithmetic propositions of the shape preserving operator and a new distance measure between trapezoidal numbers. Secondly, we investigate the specific model algorithms for FIFCFO model (fuzzy input-fuzzy coefficient-fuzzy output model) and introduce three advantages of fit criteria, Error Index, Similarity Measure and Distance Criterion. Thirdly, we use a design set and two reference sets to make a comparison between our proposed model and the reference models and determine their goodness with the above three criteria. Finally, we draw the conclusion that our proposed model is reasonable and has better prediction accuracy, but short of robust, comparing to the reference models by the three goodness of fit criteria. So, we can expand our traditional fuzzy regression model to our proposed new model.
文摘The fundamental principle for differentiating water masses is a strict consideration of their relative "interior homogeneity" and obvious "exterior differences" with others in characteristics. The conceptions of water type, water mass and water system are dealt with on the basis of the theory of fuzzy sets. A proposal to apply the theory of fuzzy sets to define the water mass and its core, independent area, boundary and mixing area is put forward.As an example, the membership function of the surface water masses in the Yellow Sea and East China Sea in August, 1979, are considered. Their cores, independent areas, boundaries, mixing areas and the approximation degrees between different water masses are calculated respectively. The water masses are ranged according to their fuzzy degrees.
基金Sponsored by the National Hi-Tech Program of China(Grant No. 2005AA420050)the National Key Technology R&D Program of China(Grant No.2006BAD10A0401, 2006BAH02A01)
文摘In a special case of type-2 fuzzy logic systems (FLS), i.e. geometric inteIval type-2 fuzzy logic systems (GIT-2FLS), the crisp output is obtained by computing the geometric center of footprint of uncertainly (FOU) without type-reduction, but the defuzzifying method acts against the corner concepts of type-2 fuzzy sets in some cases. In this paper, a PSO type-reduction method for GIT-2FLS based on the particle swarm optimization (PSO) algorithm is presented. With the PSO type-reduction, the inference principle of geometric interval FLS operating on the continuous domain is consistent with that of traditional interval type-2 FLS operating on the discrete domain. With comparative experiments, it is proved that the PSO type-reduction exhibits good performance, and is a satisfactory complement for the theory of GIT-2FLS.
文摘Due to using the fuzzy clustering algorithm,the accuracy of image segmentation is not high enough.So one hybrid clustering algorithm combined with intuitionistic fuzzy factor and local spatial information is proposed.Experimental results show that the proposed algorithm is superior to other methods in image segmentation accuracy and improves the robustness of the algorithm.
文摘采用集合论的方法给出了单位模糊集合和二型模糊集合及其在一点的限制等定义,使得二型模糊集合更易于理解.通过定义嵌入单位模糊集合来描述一般二型模糊集合,并给出离散、半连通二型模糊集合的表达式.根据论域、主隶属度及隶属函数的特性将二型模糊集合分为四种类型:离散、半连通、连通及复合型,并根据连通的特点将连通二型模糊集合分为单连通及多连通两类.利用支集的闭包(Closure of support,CoS)划分法表述主隶属度及区间二型模糊集合.提出了CoS二、三次划分法分别来表述单、复连通二型模糊集合,并使每一个子区域的上下边界及次隶属函数在该子区域上的限制分别具有相同的解析表述式.最后,探讨了二型模糊集合在一点的限制、主隶属度、支集、嵌入单位模糊集合之间的关系.
基金supported by the National Key Research and Development Program of China(2018YFB1201500)
文摘This paper uses Gaussian interval type-2 fuzzy se theory on historical traffic volume data processing to obtain a 24-hour prediction of traffic volume with high precision. A K-means clustering method is used in this paper to get 5 minutes traffic volume variation as input data for the Gaussian interval type-2 fuzzy sets which can reflect the distribution of historical traffic volume in one statistical period. Moreover, the cluster with the largest collection of data obtained by K-means clustering method is calculated to get the key parameters of type-2 fuzzy sets, mean and standard deviation of the Gaussian membership function.Using the range of data as the input of Gaussian interval type-2 fuzzy sets leads to the range of traffic volume forecasting output with the ability of describing the possible range of the traffic volume as well as the traffic volume prediction data with high accuracy. The simulation results show that the average relative error is reduced to 8% based on the combined K-means Gaussian interval type-2 fuzzy sets forecasting method. The fluctuation range in terms of an upper and a lower forecasting traffic volume completely envelopes the actual traffic volume and reproduces the fluctuation range of traffic flow.