期刊文献+

Ⅱ型模糊集合与系统研究进展 被引量:15

A survey of type-2 fuzzy sets and systems
下载PDF
导出
摘要 Ⅱ型模糊集合是传统Ⅰ型模糊集合的扩展,其本质是模糊集合中隶属度值的再次模糊化表示.Ⅱ型模糊集合可以直接处理模糊规则的不确定性,是解决现实环境高不确定性问题的有效手段.本文首先简要给出了Ⅱ型模糊集合与系统的基本概念,然后分别回顾了广义和区间Ⅱ型模糊理论的发展历史.接着分别讨论了广义和区间Ⅱ型模糊系统的计算复杂性问题研究进展,并进一步介绍了基于区间Ⅱ型模糊集合的词计算理论发展状况.最后给出了本文的结论和进一步研究问题的展望. A type-2 fuzzy set(T2-FS), which essentially is the refuzzification presentation of membership values in the fuzzy set, is the extension of the traditional type-1 fuzzy set(T1-FS). The T2-FS can directly deal with the uncertainty of fuzzy rules; thus, it is an effective approach to solving the problems with high uncertainties in realistic environment. In this paper, the basic terminologies of the T2-FS and the type-2 fuzzy logic system(T2-FLS) are briefly introduced. The developments of the generalized fuzzy theory and the interval type-2 fuzzy theory are reviewed, respectively. The progress in tackling the computational complexity in the interval and generalized T2-FLS is also discussed. The theory of computing with words based on the interval T2-FS is introduced in further. Finally, conclusion remarks and further research prospects of the type-2 fuzzy theory are given.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2011年第12期1693-1703,共11页 Control Theory & Applications
基金 国家自然科学基金资助项目(60704012) 中央高校科研业务费资助项目(2009zm0161)
关键词 Ⅱ型模糊集合 Ⅱ型模糊系统 计算复杂性 词计算 type-2 fuzzy sets; type-2 fuzzy logic systems; computational complexity; computing with words
  • 相关文献

参考文献120

  • 1ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8(13) 338-353. J. 被引量:1
  • 2OHN R I, COUPLAND S. Type-2 fuzzy logic: a historical view[J] IEEE Computational Intelligence Magazine, 2007, 2(1): 57 - 62. 被引量:1
  • 3MENDEL J M. Computing with words, when words can mean dif- ferent things to different people[C]//Proceedings of the International ICSC Symposium On Fuzzy Logic and Applications. Rochester, USA: IEEE, 1999:158 - 164. 被引量:1
  • 4KARNIK N N, MENDEL J M, LIANG Q. Type-2 fuzzy logic sys- tems[J]. 1EEE Transactions on Fuzzy Systems, 1999, 7(6): 643 - 658. 被引量:1
  • 5MENDEL J M, JOHN R I. Type-2 fuzzy sets made simple[J]. IEEE Transactions on Fuzzy Systems, 2002, 10(2): 117 - 127. 被引量:1
  • 6MENDEL J M. Type-2 fuzzy sets: some questions and answers[J]. IEEE Neural Networks Society Newsletter, 2003:10 - 13. 被引量:1
  • 7MENDEL J M. Type-2 fuzzy sets and systems: an overview[J]. IEEE Computational Intelligence Magazine, 2007, 2(1): 20 - 29. 被引量:1
  • 8ZADEH L A. The concept of a linguistic variable and its application to approximate reasoning-I[J]. Information Sciences, 1975, 8(1): 199 - 249. 被引量:1
  • 9HISDAL E. The IF THEN ELSE statement and interval-valued fuzzy sets of higher type[J]. International Journal of Man-Machine Studies, 1981, 15(44): 385- 455. 被引量:1
  • 10COUPLAND S, JOHN R I. Type-2 fuzzy logic and the modelling of uncertainty[M] //Fuzzy Sets and Their Extensions: Representation, Aggregation andModels. Berlin: Springer-Verlag, 2008: 3- 22. 被引量:1

二级参考文献33

  • 1肖建,白裔峰,于龙.模糊系统结构辨识综述[J].西南交通大学学报,2006,41(2):135-142. 被引量:32
  • 2Mendel J M,John R I. A fundamental decomposition of type-2 fuzzy sets[A]. IFSA World Congress and 20th NAFIPS International Conference,July,2001,Joint 9th,4:1896-1902. 被引量:1
  • 3Mendel J M. On the importance of interval sets in type-2 fuzzy logic systems[A]. IFSA World Congress and 20th NAFIPS International Conference[C]. July 2001,Joint 9th,3:1647-1652. 被引量:1
  • 4Karnik N N,Mendel J M. Applications of type-2 fuzzy logic systems: handling the uncertainty associated with surveys[A]. Proc FUZZ-IEEE,1999,3(Aug.):1546-1551. 被引量:1
  • 5Mendel J M,John R I B. Type-2 fuzzy sets made simple[J]. IEEE Trans. Fuzzy Systs,2002,10(April):117-127. 被引量:1
  • 6Mendel J M. Uncertain rule-based fuzzy logic systems:introduction an new directions[M]. Printic Hall PTR,2001. 被引量:1
  • 7John R I, Czarnecki C. An adaptive type-2 fuzzy system for learning linguistic membership grades[J]. Proc FUZZ-IEEE,1999,3:1552-1556. 被引量:1
  • 8Liang Q L,Mendel J M. Interval type-2 fuzzy logic systems[A]. The 9th IEEE International Conf on Fuzzy Systs[C]. 2000,vol.1:328-333. 被引量:1
  • 9Torralba F C, Gachechiladze T, Meladze H, Tsertsvadze G. Fuzzy models of language structures[J]. IEEE Trans Fuzzy Systs,2002,10(Aug.):421-435. 被引量:1
  • 10Zadeh L A.The concept of a linguistic variable and its application to approximate reasoning-1[J]. Information Sciences,1970,8:199-249. 被引量:1

共引文献48

同被引文献133

引证文献15

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部