期刊文献+

一种数据驱动的Ⅱ型T-S模糊建模方法 被引量:3

A Type-Ⅱ T-S fuzzy modeling method for data-driven approaches
下载PDF
导出
摘要 现场采集的数据不可避免地包含一些诸如噪声干扰之类的不确定性,由数据驱动建立的模型需要具备较强的处理不确定因素影响的能力.在以往文献的Ⅰ型T-S模糊建模方法的基础上,提出了一种基于数据驱动的Ⅱ型T-S模糊建模方法.其过程是通过分析采集的数据样本计算得到不确定因素的影响程度,在Ⅰ型T-S模糊模型的基础上,前件参数上采用Ⅱ型的模糊集来代替Ⅰ型的模糊集,后件参数上则采用I型模糊集来代替数值,由此拓展得到Ⅱ型T-S模糊模型.最后通过pH中和反应过程对所提出的方法进行仿真验证.仿真结果表明,该方法建立的模型能更好地处理不确定因素的影响,取得更高的准确度. Data collected from the field inevitably contains uncertainties such as noise or other disturbances; mathematical models established with data-driven approach must possess strong capability to deal with the influence of uncertainties. Following analysis of current methods for type-Ⅰ Takagi-Sugeno (T-S) fuzzy modeling, a method suitable for type- Ⅱ T-S fuzzy modeling was proposed. In the data driven modeling process, the influence of the degree of uncertainty was determined by analysis of the collected data. On the basis of the type-Ⅰ fuzzy model, for antecedent parameters, we employed the fuzzy set of the type- Ⅱ fuzzy model to replace the counterpart from the type- Ⅰ model . But for consequent parameters, we took type-Ⅰ fuzzy sets to replace crisp numbers. This produced an improved type-Ⅱ T-S fuzzy model. Finally, a pH neutralization process was taken as an example to verify the proposed mathematical model. Simulation results showed that this method can handle the influence of uncertainties better and achieves higher accuracy.
出处 《智能系统学报》 2009年第4期303-308,共6页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金资助项目(60604018) 上海自然科学基金资助项目(06ZR14044)
关键词 Ⅱ型模糊 T—S模糊模型 数据驱动 pH中和反应过程 Type- Ⅱ fuzzy T-S fuzzy model data-driven pH neutralization process
  • 相关文献

参考文献12

  • 1ZADEH L A. The concept of a linguistic variable and its application to approximate reasoning- I [J].Information Sci ences, 1975,8 ( 9 ) : 199-249. 被引量:1
  • 2KARNIK N N, MENDEL J M, LIANG Qiliau. Type-II fuzzy logic systems [ J]. 1EEE Transactions on Fuzzy Systems, 1999,7 ( 6 ) : 643-658. 被引量:1
  • 3陈薇,孙增圻.二型模糊系统研究与应用[J].模糊系统与数学,2005,19(1):126-135. 被引量:26
  • 4MENDEL J M, ROBERT I J, LIU Feilong. Interval type-2 fuzzy logic systems made simple [ J ]. IEEE Transactions on Fuzzy Systems, 2006,14 ( 6 ) : 808-821. 被引量:1
  • 5LIANG Qilian, MENDEL J M. Interval type-2 fuzzy logic systems theory and design[ J]. IEEE Transactions on Fuzzy Systems, 2000,8 ( 5 ) :535-550. 被引量:1
  • 6LIANG Qilian, MENDEL J M. An introduction to type-2 TSK fuzzy logic systems [ C ]//Proceedings of IEEE International Conference on Fuzzy Systems. Seoul, Korea, 1999: 1534-1539. 被引量:1
  • 7MeNDEZ G M, CASTILLO O. Interval type-2 TSK fuzzy logic systems using hybrid learning algorithm [ C ]//Proceedings of IEEE International Conference on Fuzzy Systems. Reno, USA, 2005:230-235. 被引量:1
  • 8LI Ning, LI Shaoyuan, XI Yugeng. Modeling pH neutralization processes using fuzzy satisfactory clustering [ C ]//Proceedings of IEEE International Conference on Fuzzy Systems. Melbourne, Australia, 2001:308-311. 被引量:1
  • 9GUSTAFSON D, KESSEL W C. Fuzzy clustering with a fuzzy covariance matrix[ C]//Proc of IEEE CDC. San Diego, 1979:761-766. 被引量:1
  • 10TAKAGI T, SUGENO M. Fuzzy identification of systems and its applications to modeling and control [J]. IEEE Transactions on Systems, 1985,15 ( 1 ) : 116-132. 被引量:1

二级参考文献22

  • 1Mendel J M,John R I. A fundamental decomposition of type-2 fuzzy sets[A]. IFSA World Congress and 20th NAFIPS International Conference,July,2001,Joint 9th,4:1896-1902. 被引量:1
  • 2Mendel J M. On the importance of interval sets in type-2 fuzzy logic systems[A]. IFSA World Congress and 20th NAFIPS International Conference[C]. July 2001,Joint 9th,3:1647-1652. 被引量:1
  • 3Karnik N N,Mendel J M. Applications of type-2 fuzzy logic systems: handling the uncertainty associated with surveys[A]. Proc FUZZ-IEEE,1999,3(Aug.):1546-1551. 被引量:1
  • 4Mendel J M,John R I B. Type-2 fuzzy sets made simple[J]. IEEE Trans. Fuzzy Systs,2002,10(April):117-127. 被引量:1
  • 5Mendel J M. Uncertain rule-based fuzzy logic systems:introduction an new directions[M]. Printic Hall PTR,2001. 被引量:1
  • 6John R I, Czarnecki C. An adaptive type-2 fuzzy system for learning linguistic membership grades[J]. Proc FUZZ-IEEE,1999,3:1552-1556. 被引量:1
  • 7Liang Q L,Mendel J M. Interval type-2 fuzzy logic systems[A]. The 9th IEEE International Conf on Fuzzy Systs[C]. 2000,vol.1:328-333. 被引量:1
  • 8Torralba F C, Gachechiladze T, Meladze H, Tsertsvadze G. Fuzzy models of language structures[J]. IEEE Trans Fuzzy Systs,2002,10(Aug.):421-435. 被引量:1
  • 9Zadeh L A.The concept of a linguistic variable and its application to approximate reasoning-1[J]. Information Sciences,1970,8:199-249. 被引量:1
  • 10Karnik N N,Mendel J M. Operation on type-2 fuzzy sets[J].Fuzzy and Systems,2001,122:327-348. 被引量:1

共引文献25

同被引文献30

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部