期刊文献+

对区间二型模糊集的EKM降型法的改进 被引量:10

Improvement of enhanced Karnik-Mendel algorithm for interval type-2 fuzzy sets
原文传递
导出
摘要 二型模糊集的质心计算称为降型,目前的降型方法大多计算成本较高,其中EKM(Enhanced Karnik-Mendel)法可计算区间二型模糊集的质心.然而,由于EKM算法中求取切换点的初始化方法还不完善,计算时问较长,使其在实际应用中受到一定限制.对此,提出一种新的改进EKM法,对原有方法进行了两处改进:更改切换点的初始化条件和改进查找切换点的方法.所提出的方法可实现向上和向下搜索,计算量大大减小,降型更有效.仿真结果验证了新的改进EKM法的有效性. Type reduction is the work of computing the centroid of a type-2 fuzzy set. At present, most of type reduction methods have high computational cost. The enhanced Karnik-Mendel(EKM) algorithm can compute the centroid of an interval type-2 fuzzy set efficiently. However, the initialization of the switch point in the EKM algorithm is not a good one, and the computation time is long, which makes a limit on the application in real system. In view of these problems, a novel improved EKM algorithm is developed for improving the EKM algorithm. The proposed algorithm provides two improvements on the EKM algorithm. Firstly, the initialization conditions of switch points are changed. Then, the method of searching for switch points is improved, in which can search upward and downward. The number of computations involved is greatly reduced and type reduction can be done much more efficiently. The simulation results show the effectiveness of the proposed method.
出处 《控制与决策》 EI CSCD 北大核心 2013年第8期1165-1172,共8页 Control and Decision
基金 辽宁省科技计划项目(2010020176-301) 沈阳市基金项目(F10-2D5-1-57)
关键词 区间二型模糊集 降型 EKM法 新的改进EKM法 interval type-2 fuzzy sets type reduction enhanced Karnik-Mendel(EKM) novel improved EKM algorithm
  • 相关文献

参考文献1

二级参考文献13

  • 1Nguyen T M, Wu J Q M. A combination of positive and negative fuzzy rules for image classification problem [ C ]//Proceedings of the 2008 Seventh International Conference on Machine Learning and Applications, Washington DC, USA: IEEE Computer Society ,2008:741-746. 被引量:1
  • 2Huang Guangbin, Zhu Qinyu, Siew Chee-Kheong. Extreme learning machine : theory and applications [ J ]. Neurocomputing,2006,70( 1-3 ) :489-501. 被引量:1
  • 3Mandai D P, Murthy C A, Pal S K. Formulation of a multivalued recognition system [ J]. IEEE Transactions on Systems, Man and Cybernetics, 1992,22 (4) :607-.620. 被引量:1
  • 4Pal S, Manda D P. Linguistic recognition system based on approximate reasoning [J]. Information Sciences, 1992,61 (1-2) : 135-161. 被引量:1
  • 5Ishibuchi H, Yamamoto T. Rule weight specification in fuzzy rule-based classification systems [ J ]. IEEE Transactions on Fuzzy Systems, 2005,13 (4) :428 -435. 被引量:1
  • 6Wu X, Zhang C, Zhang S. Efficient mining both positive and negative association rules [ J]. ACM Transactions on Information Systems,2004,22 (3) :381-405. 被引量:1
  • 7Teng W, Hsieh M, Chen M. On the mining of substitution rules for statistically dependent items [ C ]// Proceedings 2002 IEEE International Conference on Data Mining, Washington DC, USA : IEEE Computer Society Press,2002:442-449. 被引量:1
  • 8Savasere A, Omiecinski E, Navathe S. Mining for strong negative associations in a large database of customer transactions [ C ]// Proceedings of the Fourteenth International Conference on Data Engineering. Washington DC, USA: IEEE Computer Society Press, 1998:494-502. 被引量:1
  • 9Bartlett P L. For valid generalization, the size of weights is more important than the size of networks [ J ]. Advances in Neural Information Processing Systerm, 1996,9 (1) :134-140. 被引量:1
  • 10Ferrari S, Stenge! R F. Smooth function approximation using neural networks [ J ]. IEEE Transactions on Neural Networks, 2005,16 ( 1 ) :24-38. 被引量:1

共引文献16

同被引文献43

  • 1Wang L X. A course in fuzzy systems and control [ M ]. Upper Saddle River, USA: Prentice Hall, 1996. 被引量:1
  • 2Castillo O, Melin P. Type- 2 fuzzy logic: theory and applications [ M ]. Berlin, Germany: Springer - Verlag, 2008. 被引量:1
  • 3Zadeh L A. The concept of a linguistic variable and its application to approximate reasoning [ J ]. Information Sciences, 1975, 8(2): 199-249. 被引量:1
  • 4Mendel J M. Uncertain rule - based fuzzy logic systems : introduction and new direction [ M ]. Upper Saddle River, USA: Prentice Hall, 2001. 被引量:1
  • 5Mendel J M, John R I B. Type -2 fuzzy sets made simple [J]. IEEE Transactions on Fuzzy Systems, 2002, 10 (2) : 117 -127. 被引量:1
  • 6Mendel J M. On a 50% savings in the computation of the centroid of a symmetrical interval type - 2 fuzzy set [ J ].Information Sciences, 2005, 172(4) : 417 -430. 被引量:1
  • 7Karnik N N, Mendel J M, Liang Q. Type -2 fuzzy logic systems [ J ]. IEEE Transactions on Fuzzy Systems, 1999, 7(6) : 643 -658. 被引量:1
  • 8John R I B, Mendel J M. The extended sup - star composition for type - 2 fuzzy sets made simple [ C ]/! Proceedings of IEEE International Conference on Fuzzy Systems. Vancouver, Canada: IEEE, 2006. 被引量:1
  • 9Karnik N N, Mendel .1 M. Type -2 fuzzy logic systems: type - reduction [ C ]//Proceedings of IEEE International Conference on Systems, Man, and Cybernetics. San Diego, USA: IEEE, 1998. 被引量:1
  • 10Ren Q, Balazinski M, Baron L. Type -2 TSK fuzzy logic system and its type - 1 counterpart [ J ]. International Journal of Computer Applications, 2011, 20(6) : 8 - 13. 被引量:1

引证文献10

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部