Effective rational and algebraic approximations of a large class of algebraic numbers are obtained by Thue-Siegel's method.As an application of this result,it is proved that; if D>0 is not a square,and ε=x0 +y...Effective rational and algebraic approximations of a large class of algebraic numbers are obtained by Thue-Siegel's method.As an application of this result,it is proved that; if D>0 is not a square,and ε=x0 +y0 D denotes the fundamental solution of x2-Dy2=-1,then x2+1=Dy4 is solvable if and only if y0=A2 where A is an integer.Moreover,if ≥64,then x2+1=Dy4 has at most one positive integral solution (x,y).展开更多
A new approach for solving polynomial equations is presented in this study. Two techniques for solving quartic equations are described that are based on a new method which was recently developed for solving cubic equa...A new approach for solving polynomial equations is presented in this study. Two techniques for solving quartic equations are described that are based on a new method which was recently developed for solving cubic equations. Higher order polynomial equations are solved by using a new and efficient algorithmic technique. The proposed methods rely on initially identifying the vicinities of the roots and do not require the use of complicated formulas, roots of complex numbers, or application of graphs. It is proposed that under the stated conditions, the methods presented provide efficient techniques to find the roots of polynomial equations.展开更多
基金supported by National Natural Science Foundation of China (Grant No.10971072)Guangdong Provincial Natural Science Foundation (Grant No.8151027501000114)
文摘Let a≥1 be an integer.In this paper,we will prove the equation in the title has at most three positive integer solutions.
基金Project supported by the National Natural Science Foundation of China.
文摘Effective rational and algebraic approximations of a large class of algebraic numbers are obtained by Thue-Siegel's method.As an application of this result,it is proved that; if D>0 is not a square,and ε=x0 +y0 D denotes the fundamental solution of x2-Dy2=-1,then x2+1=Dy4 is solvable if and only if y0=A2 where A is an integer.Moreover,if ≥64,then x2+1=Dy4 has at most one positive integral solution (x,y).
文摘A new approach for solving polynomial equations is presented in this study. Two techniques for solving quartic equations are described that are based on a new method which was recently developed for solving cubic equations. Higher order polynomial equations are solved by using a new and efficient algorithmic technique. The proposed methods rely on initially identifying the vicinities of the roots and do not require the use of complicated formulas, roots of complex numbers, or application of graphs. It is proposed that under the stated conditions, the methods presented provide efficient techniques to find the roots of polynomial equations.