针对偏最小二乘方法(partial least squares,PLS)在无量纲标准化处理后导致的特征值大小近似相等,难以获得代表性的潜变量等问题,提出了一种基于相对变换PLS(relative-transformation PLS,RTPLS)的故障检测方法。该方法引入马氏距离相...针对偏最小二乘方法(partial least squares,PLS)在无量纲标准化处理后导致的特征值大小近似相等,难以获得代表性的潜变量等问题,提出了一种基于相对变换PLS(relative-transformation PLS,RTPLS)的故障检测方法。该方法引入马氏距离相对变换理论,通过计算采样数据之间的马氏距离,将原始空间数据变换到相对空间。然后在相对空间进行PLS分解,提取有代表性的潜变量,建立故障检测模型,实现采样数据的在线检测。通过对TE(Tennessee Eastman)过程故障和轧钢机系统力传感器故障的仿真实验验证了所提出方法的有效性和实用性。理论分析和仿真实验均表明,基于RTPLS的故障检测方法能有效地消除量纲的影响,提取具有更大的变化度和代表性的隐变量,增加故障检测的精度和实时性。展开更多
提出一种基于递归稀疏主成分分析(recursive sparse principal component analysis,RSPCA)的工业过程故障监测与诊断方法,可用于时变工业过程的自适应故障监测与诊断.通过引入弹性回归网,将主成分问题转化为Lasso与Ridge结合的凸优化问...提出一种基于递归稀疏主成分分析(recursive sparse principal component analysis,RSPCA)的工业过程故障监测与诊断方法,可用于时变工业过程的自适应故障监测与诊断.通过引入弹性回归网,将主成分问题转化为Lasso与Ridge结合的凸优化问题,采用秩-1矩阵修正对协方差矩阵进行递归分解,递归更新稀疏载荷矩阵和监测统计量的过程控制限,以实现连续工业过程长时间自适应故障监测,对检测出来的故障通过贡献图法实现对故障的诊断.在田纳西-伊斯曼(TE)过程进行实验验证,结果表明,与传统的故障监测方法相比,所提出的方法有效降低了故障漏检率和误报率,且时间复杂度低,确保了故障监测的灵敏度和实时性.展开更多
Traditional data driven fault detection methods assume unimodal distribution of process data so that they often perform not well in chemical process with multiple operating modes. In order to monitor the multimode che...Traditional data driven fault detection methods assume unimodal distribution of process data so that they often perform not well in chemical process with multiple operating modes. In order to monitor the multimode chemical process effectively, this paper presents a novel fault detection method based on local neighborhood similarity analysis(LNSA). In the proposed method, prior process knowledge is not required and only the multimode normal operation data are used to construct a reference dataset. For online monitoring of process state, LNSA applies moving window technique to obtain a current snapshot data window. Then neighborhood searching technique is used to acquire the corresponding local neighborhood data window from the reference dataset. Similarity analysis between snapshot and neighborhood data windows is performed, which includes the calculation of principal component analysis(PCA) similarity factor and distance similarity factor. The PCA similarity factor is to capture the change of data direction while the distance similarity factor is used for monitoring the shift of data center position. Based on these similarity factors, two monitoring statistics are built for multimode process fault detection. Finally a simulated continuous stirred tank system is used to demonstrate the effectiveness of the proposed method. The simulation results show that LNSA can detect multimode process changes effectively and performs better than traditional fault detection methods.展开更多
Leaching process is the first step in zinc hydrometallurgy, which involves the complex chemical reactions for dissolving zinc bearing material in dilute sulfuric acid. Ensuring the safe running of the process is a key...Leaching process is the first step in zinc hydrometallurgy, which involves the complex chemical reactions for dissolving zinc bearing material in dilute sulfuric acid. Ensuring the safe running of the process is a key point in the operation. An expert fault diagnosis system for the leaching process was proposed, which has been implemented in a nonferrous metals smeltery. The system architecture and the diagnosis procedure were presented, and the rule models with the certainty factor were constructed based on the empirical knowledge, empirical data and statistical results on past fault countermeasures, and an expert reasoning strategy was proposed which employs the rule models and Beyes presentation and combines forward chaining and backward chaining. [展开更多
文摘针对偏最小二乘方法(partial least squares,PLS)在无量纲标准化处理后导致的特征值大小近似相等,难以获得代表性的潜变量等问题,提出了一种基于相对变换PLS(relative-transformation PLS,RTPLS)的故障检测方法。该方法引入马氏距离相对变换理论,通过计算采样数据之间的马氏距离,将原始空间数据变换到相对空间。然后在相对空间进行PLS分解,提取有代表性的潜变量,建立故障检测模型,实现采样数据的在线检测。通过对TE(Tennessee Eastman)过程故障和轧钢机系统力传感器故障的仿真实验验证了所提出方法的有效性和实用性。理论分析和仿真实验均表明,基于RTPLS的故障检测方法能有效地消除量纲的影响,提取具有更大的变化度和代表性的隐变量,增加故障检测的精度和实时性。
文摘提出一种基于递归稀疏主成分分析(recursive sparse principal component analysis,RSPCA)的工业过程故障监测与诊断方法,可用于时变工业过程的自适应故障监测与诊断.通过引入弹性回归网,将主成分问题转化为Lasso与Ridge结合的凸优化问题,采用秩-1矩阵修正对协方差矩阵进行递归分解,递归更新稀疏载荷矩阵和监测统计量的过程控制限,以实现连续工业过程长时间自适应故障监测,对检测出来的故障通过贡献图法实现对故障的诊断.在田纳西-伊斯曼(TE)过程进行实验验证,结果表明,与传统的故障监测方法相比,所提出的方法有效降低了故障漏检率和误报率,且时间复杂度低,确保了故障监测的灵敏度和实时性.
基金Supported by the National Natural Science Foundation of China(61273160,61403418)the Natural Science Foundation of Shandong Province(ZR2011FM014)+1 种基金the Fundamental Research Funds for the Central Universities(10CX04046A)the Doctoral Fund of Shandong Province(BS2012ZZ011)
文摘Traditional data driven fault detection methods assume unimodal distribution of process data so that they often perform not well in chemical process with multiple operating modes. In order to monitor the multimode chemical process effectively, this paper presents a novel fault detection method based on local neighborhood similarity analysis(LNSA). In the proposed method, prior process knowledge is not required and only the multimode normal operation data are used to construct a reference dataset. For online monitoring of process state, LNSA applies moving window technique to obtain a current snapshot data window. Then neighborhood searching technique is used to acquire the corresponding local neighborhood data window from the reference dataset. Similarity analysis between snapshot and neighborhood data windows is performed, which includes the calculation of principal component analysis(PCA) similarity factor and distance similarity factor. The PCA similarity factor is to capture the change of data direction while the distance similarity factor is used for monitoring the shift of data center position. Based on these similarity factors, two monitoring statistics are built for multimode process fault detection. Finally a simulated continuous stirred tank system is used to demonstrate the effectiveness of the proposed method. The simulation results show that LNSA can detect multimode process changes effectively and performs better than traditional fault detection methods.
文摘Leaching process is the first step in zinc hydrometallurgy, which involves the complex chemical reactions for dissolving zinc bearing material in dilute sulfuric acid. Ensuring the safe running of the process is a key point in the operation. An expert fault diagnosis system for the leaching process was proposed, which has been implemented in a nonferrous metals smeltery. The system architecture and the diagnosis procedure were presented, and the rule models with the certainty factor were constructed based on the empirical knowledge, empirical data and statistical results on past fault countermeasures, and an expert reasoning strategy was proposed which employs the rule models and Beyes presentation and combines forward chaining and backward chaining. [