期刊文献+

IGSA-KPCA邻域建模的多模过程故障检测方法

Multimode Process Fault Detection Approach Based on IGSA-KPCA Neighborhood Modeling
下载PDF
导出
摘要 为提高多模过程故障检测的准确率,提出改进引力搜索算法-核主元分析邻域建模的故障检测方法。首先应用及时学习算法在参考数据集中找到待检数据的相关数据,再将相关数据和待检数据作为核主元分析检测模型的输入进行故障检测。核主元分析模型中的参数对故障检测性能有较大影响,提出改进引力搜索算法对模型中参数进行优化,提高检测性能。将所提方法应用于青霉素多模过程进行实验验证,仿真结果表明所提方法在多模过程故障检测中用时短、准确率高。 In order to improve multimode process fault detection low accuracy,an ensemble method called improved gravitational search algorithm-kernel principal component analysis( IGSA-KPCA) neighborhood modeling is proposed. Firstly,the related data is found in reference data sets by using just in time learning( JITL) approach,then the related data is set and current data are used as inputs of the KPCA model. KPCA model parameters have great influence on fault detection performance and improved GSA is put forw ard to optimize the KPCA model parameters,which improves fault detection performance. Finally,the proposed method is applied to penicillin multimode process and the simulation results show that IGSA-KPCA neighborhood modeling method is better than traditional method for multimode process fault detection with fast and high accuracy.
出处 《沈阳理工大学学报》 CAS 2016年第1期22-26,共5页 Journal of Shenyang Ligong University
基金 辽宁省教育厅科学研究基金资助项目(L2014083)
关键词 多模过程故障检测 及时学习算法 改进引力搜索算法 核主元分析 青霉素过程 multimode process fault detection JITL IGSA KPCA penicillin process
  • 相关文献

参考文献8

  • 1N S J. Survey on data-driven industrial process moni- torint and fault diagnosis ~ J ]. Annual Reviews in Con- tro1,2012,36 ( 2 ) :220 - 234. 被引量:1
  • 2BERNHARD S, ALEXANDER S. Nonlinear compo- nent analysis as a kernel eigenvalue problem ~ J ]. Neu- ral Computation, 1998,10 ( 5 ) : 1299 - 1319. 被引量:1
  • 3SATHISH N, RAJAGOPALAN S. Multi-mode based process condition monitoring of off shore oil and gas production process [ J ]. Chemical Engineering Research and Design,2010,88 (5) :572 - 591. 被引量:1
  • 4ZHU Z, SONG Z. Process pattern construction and multi-mode monitoring ~ J 1. Process Control, 2012,22 ( 1 ) :247 - 262. 被引量:1
  • 5JIA M X, XU H Y, LIU X F. The optimization of the kind and parameters of kernel function in KPCA for process monitoring E J ~. Computers and Chemical Engi- neering ,2012,46 ( 15 ) :94 - 104. 被引量:1
  • 6BONTEMPI G, BIRATI'ARI M. The local paradigm for modeling and control:From neural-fuzzy to lazy learn- ing~ J~. Fuzzy Sets and Systems ,2001 (121) :59 -72. 被引量:1
  • 7范玉刚,李平,宋执环.基于特征样本的KPCA在故障诊断中的应用[J].控制与决策,2005,20(12):1415-1418. 被引量:20
  • 8RASHEDI E, NEZAMABADI-POUR H, SARYAZD1 S. GSA : A Gravitation Search Algorithm I J 3- Informa- ton Science ,2009,179 ( 13 ) :2232 - 2248. 被引量:1

二级参考文献8

  • 1Schlkopf B, Smola A, Müller K R. Nolinear Component Analysis as a Kernel Eigenvalue Problem[J]. Neural Computation, 1998, 10(5) : 1299-1319. 被引量:1
  • 2Kim Sang-Woon, John Oommen B. On Using Prototype Reduction Schemes to Optimize Kernel-based Nonlinear Subspace Methods[J]. Pattern Recognition, 2004, 37(2): 227-239. 被引量:1
  • 3Baudat G, Anouar F. Feature Vector Selection and Projection Using Kernels[J]. Neurocom puting, 2003, 55(1-2):21-38. 被引量:1
  • 4Lee Jong-Min, Chang Kvoo Yoo, Sang Wook Choi, et al. Nonlinear Process Monitoring Using Kernel Principal Component Analysis[J]. Chemical Engineering Science, 2004, 59(1): 223-234. 被引量:1
  • 5Downs J J, Vogel E F. A Plant-wide Industrial Process Control Problem[J]. Computers and Chemical Engineering, 1993,17(3):245-255. 被引量:1
  • 6Lyman P R, Georgakis C. Plant-wide Control of the Tennessee Eastman Problem[J]. Computers and Chemical Engineering, 1995,19(3) :321-331. 被引量:1
  • 7Leo H Chiang, Randy J Pell, Mary Beth Seasholtz. Exploring Process Data with the Use of Robust Outlier Detection Algorithms[J]. J of Process Control, 2003 , 13(5): 437-449. 被引量:1
  • 8李巍华,廖广兰,史铁林.核函数主元分析及其在齿轮故障诊断中的应用[J].机械工程学报,2003,39(8):65-70. 被引量:53

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部