期刊文献+

基于KPCA的污水处理过程监视 被引量:2

KPCA Based Monitoring of Wastewater Treatment Processes
下载PDF
导出
摘要 污水生化处理过程的严重非线性给过程监视带来困难。核主元分析(KPCA)可以通过集成算子与非线性核函数有效计算高维特征空间的主元成分,从而有效捕捉过程中的非线性关系。基于KPCA方法构造污水生化处理过程监视策略,可以有效监测污水处理过程中出现的异常状态,与线性PCA监视方法相比,显示出更好的监视性能。 The inherent high nonlinearity of wastewater treatment processes brings exceptional difficulties in process monitoring. Kernel principal component analysis (KPCA) can efficiently compute principal components in high-dimensional feature space by mean of integral operators and nonlinear kernel functions and seize the nonlinear relations of processes. Monitoring strategy developed using KPCA approach can detect the abnormal behavior presented in processes. Compared to PCA, KPCA shows better performance and has very good application prospect.
作者 樊立萍 徐阳
机构地区 沈阳化工学院
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2005年第z1期157-158,共2页 Chinese Journal of Scientific Instrument
关键词 KPCA 主元分析 非线性过程 故障检测 Kernel PCA Principal component analysis Nonlinear process Fault detection
  • 相关文献

参考文献4

  • 1[1]Bakshi B. R.. Multiscale PCA with application to multivariate statistical process monitoring. A. I. Ch. E. Journal, 1998,44(7): 1596~ 1610. 被引量:1
  • 2[2]Mika S. , Sch Olkopf B. ,Smola A. J. ,Muller K.-R. ,Scholz M. , Ratsch G. Kernel PCA and de-noising in feature spaces. Advances in Neural Information Processing Systems, 1999,11: 536~ 542. 被引量:1
  • 3[3]Sch O lkopf B. , Smola A. J. , Müller K.. Nonlinear component analysis as a kernel eigenvalue problem.Neural Computation, 1998,10(5): 1299~ 1399. 被引量:1
  • 4[4]Spanjers H. ,Vanrolleghem P. A. , Nguyen K. , Vanhooren H. , Party G. G. Towards a simulation-benchmark for evaluating respirometry-based control strategies. Water Science and Technology, 1998,37 (12): 219~226. 被引量:1

同被引文献22

  • 1KIM K I, FRANZ M O, SCHOLKOPF S. Iterative kernel principal component analysis for image modeling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27 (9) : 1351-1366. 被引量:1
  • 2ADDI H, WlLLIANMS L J. Principal component analysis[J]. Wiley Interdisciplinary Reviews:Comput- ational Statistics, 2010,2 (4) : 433-459. 被引量:1
  • 3BHARATH K S, DAVID A T, GERT R G L. A majorization-minimization approach to the sparse generalized eigenvalue problem [J]. Machine Learning, 2011,85(1-2) :3-39. 被引量:1
  • 4CANDES E J, WAKIN M B, BOYD S P. Enhancing sparsity by reweighted el minimization[J]. Journal of Fourier Analysis and Applications, 2008, 14 ( 5-6 ) : 877-905. 被引量:1
  • 5LAWRENCE N. Probabilistie non-linear principal component analysis with Gaussian process latent variable models[J]. The Journal of Maehine Learning Research,2005 (6) : 1783-1816. 被引量:1
  • 6Yoo C K, Lee I B. Nonlinear multivariate ltering and biopro- cess monitoring for supervising nonlinear biological processes [ J ]. Process Biochemistry, 2006,41 (8) : 1854 - 1863. 被引量:1
  • 7Choi S W, Lee I B. Nonlinear dynamic processmonitoring based on dynamic kernel PCA [ J ]. Chemical Engineering Science ,2004,59 ( 24 ) :5897 - 5908. 被引量:1
  • 8Zhu Z B, Song Z H, Palazoglu A. Process pattern construction and multi-mode monitoring [ J ]. Journal of Process Control, 2012,22( 1 ) :247 - 262. 被引量:1
  • 9Huang N, E, Shen Z, Long S R, et al. The empirical mode de- composition and the Hilbert spectrum for nonlinear and non- stationary time series analysis [ C ]//Proceedings of The Rey- al Society. 1998,454:903 - 995. 被引量:1
  • 10Chiu S L. Fuzzy model identification based on cluster estima- tion [ J ]. Journal of Intelligent & Fuzzy Systems, 1994,2 ( 3 ). 被引量:1

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部