The stacking fault energy of single crystals has been reported using the peak shift method.Presently studied all single crystals are grown by using a direct vapor transport(DVT) technique in the laboratory.The struc...The stacking fault energy of single crystals has been reported using the peak shift method.Presently studied all single crystals are grown by using a direct vapor transport(DVT) technique in the laboratory.The structural characterizations of these crystals are made by XRD.Considerable variations are shown in deformation (α) and growth(β) probabilities in single crystals due to off-stoichiometry,which possesses the stacking fault in the single crystal.展开更多
The magnetic response, microstructural and texture changes occurring during cold rolling of a Fe-14Mn-0.64C-2.4AI-0.25Si medium stacking fault energy TWlP (twinning induced plasticity) steel have been studied by X-r...The magnetic response, microstructural and texture changes occurring during cold rolling of a Fe-14Mn-0.64C-2.4AI-0.25Si medium stacking fault energy TWlP (twinning induced plasticity) steel have been studied by X-ray diffraction and magnetic techniques. The changes in the sub-grain size (Ds), probability of stacking fault formation (Psf) and microstrain in the material as cold rolling progressed were determined by using a modified version of the Williamson and Hall equation. A strong development of the crystallographic texture with increasing deformation was observed. Deformation-induced formation of a small fraction α'-martensite was observed, indicating that the steel also exhibits γ→α'-martensite transformation during cold rolling, which is discussed via the changes of the stacking-fault probability and the texture development during cold rolling.展开更多
文摘The stacking fault energy of single crystals has been reported using the peak shift method.Presently studied all single crystals are grown by using a direct vapor transport(DVT) technique in the laboratory.The structural characterizations of these crystals are made by XRD.Considerable variations are shown in deformation (α) and growth(β) probabilities in single crystals due to off-stoichiometry,which possesses the stacking fault in the single crystal.
文摘The magnetic response, microstructural and texture changes occurring during cold rolling of a Fe-14Mn-0.64C-2.4AI-0.25Si medium stacking fault energy TWlP (twinning induced plasticity) steel have been studied by X-ray diffraction and magnetic techniques. The changes in the sub-grain size (Ds), probability of stacking fault formation (Psf) and microstrain in the material as cold rolling progressed were determined by using a modified version of the Williamson and Hall equation. A strong development of the crystallographic texture with increasing deformation was observed. Deformation-induced formation of a small fraction α'-martensite was observed, indicating that the steel also exhibits γ→α'-martensite transformation during cold rolling, which is discussed via the changes of the stacking-fault probability and the texture development during cold rolling.