In certain computational systems the amount of space required to execute an algorithm is even more restrictive than the corresponding time necessary for solution of a problem. In this paper an algorithm for modular mu...In certain computational systems the amount of space required to execute an algorithm is even more restrictive than the corresponding time necessary for solution of a problem. In this paper an algorithm for modular multiplicative inverse is introduced and its computational space complexity is analyzed. A tight upper bound for bit storage required for execution of the algorithm is provided. It is demonstrated that for range of numbers used in public-key encryption systems, the size of bit storage does not exceed a 2K-bit threshold in the worst-case. This feature of the Enhanced-Euclid algorithm allows designing special-purpose hardware for its implementation as a subroutine in communication-secure wireless devices.展开更多
This paper introduces a new way of prefix code translation. It helps to finish the whole translation by mapping once (only one comparison instruction is needed for getting the length of prefix code), and returns the o...This paper introduces a new way of prefix code translation. It helps to finish the whole translation by mapping once (only one comparison instruction is needed for getting the length of prefix code), and returns the original data and the length of prefix code element. The decoding time is only about four times as many as the time accessing original data directly.展开更多
文摘In certain computational systems the amount of space required to execute an algorithm is even more restrictive than the corresponding time necessary for solution of a problem. In this paper an algorithm for modular multiplicative inverse is introduced and its computational space complexity is analyzed. A tight upper bound for bit storage required for execution of the algorithm is provided. It is demonstrated that for range of numbers used in public-key encryption systems, the size of bit storage does not exceed a 2K-bit threshold in the worst-case. This feature of the Enhanced-Euclid algorithm allows designing special-purpose hardware for its implementation as a subroutine in communication-secure wireless devices.
文摘This paper introduces a new way of prefix code translation. It helps to finish the whole translation by mapping once (only one comparison instruction is needed for getting the length of prefix code), and returns the original data and the length of prefix code element. The decoding time is only about four times as many as the time accessing original data directly.