期刊文献+

n次甚稀疏前缀码的完全化

Completion of Very Thin Prefix Codes with Degree n
下载PDF
导出
摘要 主要依据前缀码的典型分解性质以及同步码的完全化,给出次为n的甚稀疏前缀码的完全化构造方法,从而解决一类特殊前缀码的完全化问题. By using the canonical decomposition of prefix codes and completion of synchronous codes, a completion method of very thin prefix codes with degree n is given. Thus, the completion of a special class of prefix codes is solved.
作者 潘慧丽 朱清
出处 《杭州师范学院学报(自然科学版)》 2007年第3期169-174,共6页 Journal of Hangzhou Teachers College(Natural Science)
关键词 甚稀疏码 前缀码 同步码 码的次 码的完全化 very thin codes prefix codes degree of codes synchronous codes completion of codes
  • 相关文献

参考文献9

  • 1[1]Bruyere V,Latteux M.Variable-length maximal codes[J].Lecture Notes in Computer Science,1996,1099:24-47. 被引量:1
  • 2[2]Bruyere V,Perrin D.Maximal bifix codes[J].Theoretical Computer Science,1999,218:107-121. 被引量:1
  • 3[3]Bruyere V,Wang Li-min,Zhang Liang.On completion of codes with finite deciphering delay[J].European Journal of Combinatorics,1990,11:513-521. 被引量:1
  • 4[4]Guesnet Y.On maximal codes with finite interpreting delay[J].Theoretical Computer Science,2002,273:167-183. 被引量:1
  • 5[5]Bruyere V.On maximal codes with bounded synchronization delay[J].Theoretical Computer Science,1998,204:11-28. 被引量:1
  • 6[6]Zhang Liang,Zheng Hong-fen,Shum K P.Combinatorial properties of codes with degree n[J].European Journal of Combinatorics,2003,24:239-252. 被引量:1
  • 7[7]Berstel J,Perrin D.Theory of codes[M].New York:Academic Press,1985:37-241. 被引量:1
  • 8刘群,李红.同步码的完全化构造方法[J].东北大学学报(自然科学版),2003,24(5):453-456. 被引量:2
  • 9[9]Yannick Guesnet.On maximal synchronous codes[J].Theoretical Computer Science,2003,307:129-138. 被引量:1

二级参考文献10

  • 1[1]Bruyere V, Perrin D. Maximal bifix codes[J]. Theoret Comput Sci, 1999,218:107-121. 被引量:1
  • 2[2]Zhang L, Shen Z H. Completion of recognizable bifix codes[J]. Theoret Comput Sci, 1995,145:345-355. 被引量:1
  • 3[3]Zhang L, Shum K P, Peng S L. Generalized prefix relations and codes with finite decoding delay[J]. J of Automata Languages and Combinatorics, 1999,4(1):59-71. 被引量:1
  • 4[4]Guesuet Y. On maximal codes with a finite interpreting delay[J]. Theoret Comput Sci, 2002,273:167-183. 被引量:1
  • 5[5]Bruyere V, Wang L M, Zhang L. On completion of codes with finite deciphering delay[J]. European J Combin, 1990,11(6):513-521. 被引量:1
  • 6[6]Ehrenfeucht A,Rozenberg G. Each regular code is included in a regular maximal code[J]. RAIRO Inform Theor Appl, 1985,20:89-96. 被引量:1
  • 7[7]Peerin D. Completing biprefix codes[J]. Lecture Notes in Computer Science, 1982,140:397-406. 被引量:1
  • 8[8]Peerin D. Completing biprefix codes[J]. Theoret Comput Sci, 1984,28:329-336. 被引量:1
  • 9[9]Berstel J, Perrin D. Theory of codes[M]. New York: Academic Press, 1985.61-71,225-255. 被引量:1
  • 10[10]Shyr H J. Free monoids and lanquages[M]. Taiwan:Hon Min Book Com, 1991.6-11. 被引量:1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部