期刊文献+

同步码的完全化构造方法 被引量:2

Completion of Synchronous Codes
下载PDF
导出
摘要 完全码体现为编码资源的充分利用,同时它又是一种代数结构的极大元·依据同步码的度进一步研究了同步码和前缀同步码的若干组合特性,从而给出了它们的完全化·对于同步码,首先确定了一个度为1的字,证明了以该字起首并以该字结尾的字的全体是一个子自由幺半群,基于该子自由幺半群的基,构造了同步码的完全化·至于前缀同步码,找出了一个具有某种特性的无框字,全体以该字结尾而不以码字起首的字的前缀根连同给定的码便是它的完全化· ?By the degree of synchronous codes,some combinatorial characteristic of synchronous codes and prefix synchronous codes were studied. The completion of these codes was given. For synchronous codes,there is a word with degree 1. All words beginning and ending by this word are a free submonoid. Using the base of this free submonoid, the completion of synchronous codes was constructed. For prefix synchronous codes, an unborderd word with some special characteristic was found. The completion of a prefix synchronous code was made from the code itself. The prefix root of the words ends by this word and doesnt begin by the code words.
作者 刘群 李红
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第5期453-456,共4页 Journal of Northeastern University(Natural Science)
基金 国家重点基础研究发展规划项目(G1998030600)
关键词 薄码 甚薄码 前线码 同步码 完全码 码的度 码的完全化 thin codes very thin codes prefix codes synchronous codes complete codes degree of codes completion of codes
  • 相关文献

参考文献10

  • 1[1]Bruyere V, Perrin D. Maximal bifix codes[J]. Theoret Comput Sci, 1999,218:107-121. 被引量:1
  • 2[2]Zhang L, Shen Z H. Completion of recognizable bifix codes[J]. Theoret Comput Sci, 1995,145:345-355. 被引量:1
  • 3[3]Zhang L, Shum K P, Peng S L. Generalized prefix relations and codes with finite decoding delay[J]. J of Automata Languages and Combinatorics, 1999,4(1):59-71. 被引量:1
  • 4[4]Guesuet Y. On maximal codes with a finite interpreting delay[J]. Theoret Comput Sci, 2002,273:167-183. 被引量:1
  • 5[5]Bruyere V, Wang L M, Zhang L. On completion of codes with finite deciphering delay[J]. European J Combin, 1990,11(6):513-521. 被引量:1
  • 6[6]Ehrenfeucht A,Rozenberg G. Each regular code is included in a regular maximal code[J]. RAIRO Inform Theor Appl, 1985,20:89-96. 被引量:1
  • 7[7]Peerin D. Completing biprefix codes[J]. Lecture Notes in Computer Science, 1982,140:397-406. 被引量:1
  • 8[8]Peerin D. Completing biprefix codes[J]. Theoret Comput Sci, 1984,28:329-336. 被引量:1
  • 9[9]Berstel J, Perrin D. Theory of codes[M]. New York: Academic Press, 1985.61-71,225-255. 被引量:1
  • 10[10]Shyr H J. Free monoids and lanquages[M]. Taiwan:Hon Min Book Com, 1991.6-11. 被引量:1

同被引文献18

  • 1Shyr H J. Free monoids and languages [M]. 3rd ed. Taiwan: Hon Min Book Company, 2001. 被引量:1
  • 2Zhang L, Shum K P, Peng S L, Generalized prefix relations and codes with finite decoding delay [ J ]. Journal of Automata, Languages and Combinatorics, 1999,4 ( 1 ) : 59 -71. 被引量:1
  • 3Veronique B, Wang L M, Zhang L. On completion of codes with finite deciphering delay [J]. Europ J Combinatorics, 1990,11: 513 - 521. 被引量:1
  • 4Zhang L, Shum K P, Peng S L. Completion of codes with finite bi-decoding delays[J]. Theoretical Computer Science, 2003,306:123 - 137. 被引量:1
  • 5Berstel J, Perrin D. Theory of codes [ M ]. Orlando: OrlandoL Academic Press, 1985. 被引量:1
  • 6Veronique B, Dominique P. Maximal bifix codes [ J ]. Theoretical Computer Science, 1999,218 : 107 - 121. 被引量:1
  • 7Zhang L, Shen Z H. Completion of recognizable bifix codes [J]. Theoretical Ccnnputer Science, 1995,145 : 345 - 355. 被引量:1
  • 8Ehrenfeucht A, Rozenberg G. Each regular code is included in a regular maximal code [J]. RAIRO In format Theor Appl, 1985,20:89 - 96. 被引量:1
  • 9Nguyen H L. On codes having no finite completion [ J ]. Theoretical Infarmation and Applications, 1995,29 : 145 - 155. 被引量:1
  • 10Restivo A. On codes having no finite completions [J]. Discrete Mathematics, 1977,17:309 - 316. 被引量:1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部