Thermoregulated phase-separable Ru-3(CO)(12)/PETPP (PETPP=P[p-C6H4O (CH2CH2O)(n) H](3), n=6) complex catalyst was first applied in the hydrogenation of styrene. Under the conditions: P(H-2)=2.0MPa, T=90degreesC, styre...Thermoregulated phase-separable Ru-3(CO)(12)/PETPP (PETPP=P[p-C6H4O (CH2CH2O)(n) H](3), n=6) complex catalyst was first applied in the hydrogenation of styrene. Under the conditions: P(H-2)=2.0MPa, T=90degreesC, styrene could be completely transferred and the yield of ethylbenzene reached up to 99.5%. After simple decantation, the catalyst could be reused for ten times without decreasing in activity.展开更多
Porous glass was prepared by thermally treating sodium borosilicate glass for different time, the effect of thermal treatment on pore size distribution was discussed and the pore size of the prepared porous glass was ...Porous glass was prepared by thermally treating sodium borosilicate glass for different time, the effect of thermal treatment on pore size distribution was discussed and the pore size of the prepared porous glass was measured by scanning electron microscopy (SEM) and differential thermal analysis (DTA). The results show that the optimum porous glass with an average diameter of 80 nm can be prepared by thermal treatment at 600℃ for 12 h and then acid treatment for 12 h in 2 mol·L^-1 hydrochloric acid solution.展开更多
基金We are grateful for the financial support from the National Natural Science Foundation of China(Grant no.29906001).
文摘Thermoregulated phase-separable Ru-3(CO)(12)/PETPP (PETPP=P[p-C6H4O (CH2CH2O)(n) H](3), n=6) complex catalyst was first applied in the hydrogenation of styrene. Under the conditions: P(H-2)=2.0MPa, T=90degreesC, styrene could be completely transferred and the yield of ethylbenzene reached up to 99.5%. After simple decantation, the catalyst could be reused for ten times without decreasing in activity.
基金Funded by the National Natural Science Foundation of China (No.50302007)Chenguang Project of Wuhan(No.20055003059-7) 2003 Opening Foundation of State Key Laboratory of Advanced Technology for Materials Synthesis and Processing.
文摘Porous glass was prepared by thermally treating sodium borosilicate glass for different time, the effect of thermal treatment on pore size distribution was discussed and the pore size of the prepared porous glass was measured by scanning electron microscopy (SEM) and differential thermal analysis (DTA). The results show that the optimum porous glass with an average diameter of 80 nm can be prepared by thermal treatment at 600℃ for 12 h and then acid treatment for 12 h in 2 mol·L^-1 hydrochloric acid solution.