目的观察不同生物状态白色念珠菌对口腔上皮细胞的黏附能力及ALS m RNA表达,以期揭示口腔白色念球菌感染机制。方法将白色念珠菌3683、SC5314、3630与来源于50名健康志愿者的口腔上皮细胞混合培养,采用革兰阳性染色观察白色念珠菌的黏...目的观察不同生物状态白色念珠菌对口腔上皮细胞的黏附能力及ALS m RNA表达,以期揭示口腔白色念球菌感染机制。方法将白色念珠菌3683、SC5314、3630与来源于50名健康志愿者的口腔上皮细胞混合培养,采用革兰阳性染色观察白色念珠菌的黏附能力,采用荧光定量RT-PCR法检测白色念珠菌3683、SC5314、3630中ALS2及ALS3 m RNA表达情况。采用SPSS 15.0统计学软件进行数据分析。结果黏附实验结果显示,3株白色念珠菌均可黏附于口腔上皮细胞,且菌株3683黏附数量明显多于菌株SC5314和菌株3630,统计学比较显示,差异有统计学意义(P<0.05),而菌株SC5314和菌株3630黏附数量比较,差异无统计学意义(P>0.05)。荧光定量RT-PCR结果显示,白色念珠菌3683、SC5314、3630中均能检测到ALS2及ALS3 m RNA表达,其中,菌株3683ALS2及ALS3 m RNA表达水平均高于菌株SC5314和菌株3630,统计学比较显示,差异有统计学意义(P<0.05);菌株3630 ALS2及ALS3 m RNA表达水平均高于菌株SC5314,但两者比较,差异无统计学意义(P>0.05)。结论不同生物状态白色念珠菌的口腔上皮细胞黏附能力不同,菌株黏附能力的强弱可能与其ALS2及ALS3基因情况表达相关。展开更多
Porphyromonas gingivalis (P. gingivalis) has a strong association with the pathogenesis of periodontal disease. Recurrence of periodontal disease following therapy is attributed to numerous factors, and of growing i...Porphyromonas gingivalis (P. gingivalis) has a strong association with the pathogenesis of periodontal disease. Recurrence of periodontal disease following therapy is attributed to numerous factors, and of growing interest is the potential problem of intracellular bacteria that are able to persist and multiply within the host cell, thereby facilitating relapse of infection. The effect of antibiotic therapy in controlling P. gingivalis is questionable. Accordingly, while metronidazole is very effective against anaerobic extracellular P. gingivalis by disrupting the DNA of anaerobic microbial cells, this antibiotic does not effectively penetrate into mammalian cells to inhibit intracellular bacteria. Therefore in the present study, a modified porphyrin-linked metronidazole adducts, developed in our laboratory, was used to kill intracellular P. gingivalis. A series of experiments were performed, including cytotoxicity assays and cellular uptake of adducts by flow cytometry coupled with live cell imaging analysis, P. gingivalis invasion and elimination assays, and the analysis of colocalization of P. gingivalis and porphyrin-linked metronidazole by confocal laser scanning microscopy. Findings indicated that P. gingivalis and porphyrin-linked metronidazole were colocalized in the cytoplasm, and this compound was able to kill P. gingivalis intracellular with a sufficient culture time. This is a novel antimicrobial approach in the elimination of P. gingivalis from the oral cavity.展开更多
Objective: To explore the functions and mechanisms of herpes simplex virus type I(HSV-1) while infecting human oral epithelial cells in vitro(being similar to the infection in vivo). Methods:An abundance of HSV-...Objective: To explore the functions and mechanisms of herpes simplex virus type I(HSV-1) while infecting human oral epithelial cells in vitro(being similar to the infection in vivo). Methods:An abundance of HSV-1 strains amplified in Vero cells were used to infect human oral epithelial cells. The culture supernatant was collected to infect Vero cells again. Morphology of HSV-1 was identified by inverted microscope and transmission electron microscope. Nucleic acid of the virus was detected by PCR. Results:The infected human oral epithelial cells didn' t display an obvious cytopathic effect(CPE) under inverted microscope(while Vero cells which were infected by the culture supernatant showed typical(CPE). The virus particles were not observed in the cytoplasm nor in nucleus of human oral epithelial cells, however under transmission electron microscope in the cytoplasm of Vero cells, the nucleic acid of HSV-1 could be detected in infected human oral epithelial cells, by PCR. Conclusion-HSV-1 can successfully infect human oral epithelial cells. This model may provide a useful approach for studying the pathogenesis of herpes virus-associated periodontal disease.展开更多
Smokeless tobacco (ST), an alternative to smoking, has gained wide popularity among tobacco users. This study is conducted to determine the time course of gene expression associated with specific signaling pathways in...Smokeless tobacco (ST), an alternative to smoking, has gained wide popularity among tobacco users. This study is conducted to determine the time course of gene expression associated with specific signaling pathways in human oral epithelial cells after exposure to smokeless tobacco extract (STE). A differentiated layer of epithelial cell is created as a way to mimic reasonably similar physiological atmosphere. A dose and time dependent response is observed for cell viability and cell proliferation assays indicating that this model system is responsive to the treatment. Expressions of 84 genes representing 18 different signal transduction pathways are quantitated. This is accomplished by using real-time polymerase chain reaction arrays at 1 h, 3 h, 6 h and 24 h time points following exposure to STE. Changes in gene expression are observed on many cellular processes including cell cycle regulation, cell adhesion, inflammation, apoptosis, and DNA breaks-down including Akt pathway activation. Short time exposure (1 h) leads more genes to down regulate whereas longer incubation time results in more genes up regulation. Most notable differences in the expression of genes during the course of treatment are BCL2A1, BIRC3, CCL20, CDK2, EGR1, FOXA2, HOXA1, IGFBP3, IL1A, IL-8, MMP10, NOS2, NRIP1, PTGS2, SELPLG and TNF-a. This study provides an insight on gene expression on oral epithelial cells as a result of STE exposure. This may also postulate greater understanding on biological effects and the mechanism of action of STE particularly at the transcriptional level.展开更多
文摘目的观察不同生物状态白色念珠菌对口腔上皮细胞的黏附能力及ALS m RNA表达,以期揭示口腔白色念球菌感染机制。方法将白色念珠菌3683、SC5314、3630与来源于50名健康志愿者的口腔上皮细胞混合培养,采用革兰阳性染色观察白色念珠菌的黏附能力,采用荧光定量RT-PCR法检测白色念珠菌3683、SC5314、3630中ALS2及ALS3 m RNA表达情况。采用SPSS 15.0统计学软件进行数据分析。结果黏附实验结果显示,3株白色念珠菌均可黏附于口腔上皮细胞,且菌株3683黏附数量明显多于菌株SC5314和菌株3630,统计学比较显示,差异有统计学意义(P<0.05),而菌株SC5314和菌株3630黏附数量比较,差异无统计学意义(P>0.05)。荧光定量RT-PCR结果显示,白色念珠菌3683、SC5314、3630中均能检测到ALS2及ALS3 m RNA表达,其中,菌株3683ALS2及ALS3 m RNA表达水平均高于菌株SC5314和菌株3630,统计学比较显示,差异有统计学意义(P<0.05);菌株3630 ALS2及ALS3 m RNA表达水平均高于菌株SC5314,但两者比较,差异无统计学意义(P>0.05)。结论不同生物状态白色念珠菌的口腔上皮细胞黏附能力不同,菌株黏附能力的强弱可能与其ALS2及ALS3基因情况表达相关。
基金supported by the Postgraduate Research Program from The University of Sydney
文摘Porphyromonas gingivalis (P. gingivalis) has a strong association with the pathogenesis of periodontal disease. Recurrence of periodontal disease following therapy is attributed to numerous factors, and of growing interest is the potential problem of intracellular bacteria that are able to persist and multiply within the host cell, thereby facilitating relapse of infection. The effect of antibiotic therapy in controlling P. gingivalis is questionable. Accordingly, while metronidazole is very effective against anaerobic extracellular P. gingivalis by disrupting the DNA of anaerobic microbial cells, this antibiotic does not effectively penetrate into mammalian cells to inhibit intracellular bacteria. Therefore in the present study, a modified porphyrin-linked metronidazole adducts, developed in our laboratory, was used to kill intracellular P. gingivalis. A series of experiments were performed, including cytotoxicity assays and cellular uptake of adducts by flow cytometry coupled with live cell imaging analysis, P. gingivalis invasion and elimination assays, and the analysis of colocalization of P. gingivalis and porphyrin-linked metronidazole by confocal laser scanning microscopy. Findings indicated that P. gingivalis and porphyrin-linked metronidazole were colocalized in the cytoplasm, and this compound was able to kill P. gingivalis intracellular with a sufficient culture time. This is a novel antimicrobial approach in the elimination of P. gingivalis from the oral cavity.
文摘Objective: To explore the functions and mechanisms of herpes simplex virus type I(HSV-1) while infecting human oral epithelial cells in vitro(being similar to the infection in vivo). Methods:An abundance of HSV-1 strains amplified in Vero cells were used to infect human oral epithelial cells. The culture supernatant was collected to infect Vero cells again. Morphology of HSV-1 was identified by inverted microscope and transmission electron microscope. Nucleic acid of the virus was detected by PCR. Results:The infected human oral epithelial cells didn' t display an obvious cytopathic effect(CPE) under inverted microscope(while Vero cells which were infected by the culture supernatant showed typical(CPE). The virus particles were not observed in the cytoplasm nor in nucleus of human oral epithelial cells, however under transmission electron microscope in the cytoplasm of Vero cells, the nucleic acid of HSV-1 could be detected in infected human oral epithelial cells, by PCR. Conclusion-HSV-1 can successfully infect human oral epithelial cells. This model may provide a useful approach for studying the pathogenesis of herpes virus-associated periodontal disease.
文摘Smokeless tobacco (ST), an alternative to smoking, has gained wide popularity among tobacco users. This study is conducted to determine the time course of gene expression associated with specific signaling pathways in human oral epithelial cells after exposure to smokeless tobacco extract (STE). A differentiated layer of epithelial cell is created as a way to mimic reasonably similar physiological atmosphere. A dose and time dependent response is observed for cell viability and cell proliferation assays indicating that this model system is responsive to the treatment. Expressions of 84 genes representing 18 different signal transduction pathways are quantitated. This is accomplished by using real-time polymerase chain reaction arrays at 1 h, 3 h, 6 h and 24 h time points following exposure to STE. Changes in gene expression are observed on many cellular processes including cell cycle regulation, cell adhesion, inflammation, apoptosis, and DNA breaks-down including Akt pathway activation. Short time exposure (1 h) leads more genes to down regulate whereas longer incubation time results in more genes up regulation. Most notable differences in the expression of genes during the course of treatment are BCL2A1, BIRC3, CCL20, CDK2, EGR1, FOXA2, HOXA1, IGFBP3, IL1A, IL-8, MMP10, NOS2, NRIP1, PTGS2, SELPLG and TNF-a. This study provides an insight on gene expression on oral epithelial cells as a result of STE exposure. This may also postulate greater understanding on biological effects and the mechanism of action of STE particularly at the transcriptional level.