We obtained the output characteristics in wurtzite Al0.15Ga0.85N/GaN MODFETs with the full band Monte Carlo method. The gate length Lg and the channel length Los in the device are 0.2 μm and 0.4 urn, respectively. In...We obtained the output characteristics in wurtzite Al0.15Ga0.85N/GaN MODFETs with the full band Monte Carlo method. The gate length Lg and the channel length Los in the device are 0.2 μm and 0.4 urn, respectively. In the output characteristics we found a differential negative resistance effect. That is, as VDS is a constant, initially, VDS increases with increasing VDS. When VDS exceeds a certain critical value, IDS decreases with increasing VDS. The analysis for velocity-field characteristics in wurtzite CaN, the distributions of the electric field and the electron velocity in the two dimensional electron gas channel indicates that the differential negative resistance effect of the electron average velocity results in the differential negative resistance effect of the output characteristics. The transient transport also is related to the differential negative resistance effect of the output characteristics. This effect only can be observed in the devices with very short channel.展开更多
Tunneling field effect transistors(TFETs) based on two-dimensional materials are promising contenders to the traditional metal oxide semiconductor field effect transistor, mainly due to potential applications in low...Tunneling field effect transistors(TFETs) based on two-dimensional materials are promising contenders to the traditional metal oxide semiconductor field effect transistor, mainly due to potential applications in low power devices. Here,we investigate the TFETs based on two different integration types: in-plane and vertical heterostructures composed of two kinds of layered phosphorous(β-P and δ-P) by ab initio quantum transport simulations. NDR effects have been observed in both in-plane and vertical heterostructures, and the effects become significant with the highest peak-to-valley ratio(PVR)when the intrinsic region length is near zero. Compared with the in-plane TFET based on β-P and δ-P, better performance with a higher on/off current ratio of - 10-6 and a steeper subthreshold swing(SS) of - 23 mV/dec is achieved in the vertical TFET. Such differences in the NDR effects, on/off current ratio and SS are attributed to the distinct interaction nature of theβ-P and δ-P layers in the in-plane and vertical heterostructures.展开更多
文摘We obtained the output characteristics in wurtzite Al0.15Ga0.85N/GaN MODFETs with the full band Monte Carlo method. The gate length Lg and the channel length Los in the device are 0.2 μm and 0.4 urn, respectively. In the output characteristics we found a differential negative resistance effect. That is, as VDS is a constant, initially, VDS increases with increasing VDS. When VDS exceeds a certain critical value, IDS decreases with increasing VDS. The analysis for velocity-field characteristics in wurtzite CaN, the distributions of the electric field and the electron velocity in the two dimensional electron gas channel indicates that the differential negative resistance effect of the electron average velocity results in the differential negative resistance effect of the output characteristics. The transient transport also is related to the differential negative resistance effect of the output characteristics. This effect only can be observed in the devices with very short channel.
基金This project was supported by the Science and Technology Project of Jilin Provincial Education Department(JJKH20220828KJ)the Natural Science FoundationofChangchunNormal University(2020-005).
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11604019,61574020,and 61376018)the Ministry of Science and Technology of China(Grant No.2016YFA0301300)+1 种基金the Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications),Chinathe Fundamental Research Funds for the Central Universities,China(Grant No.2016RCGD22)
文摘Tunneling field effect transistors(TFETs) based on two-dimensional materials are promising contenders to the traditional metal oxide semiconductor field effect transistor, mainly due to potential applications in low power devices. Here,we investigate the TFETs based on two different integration types: in-plane and vertical heterostructures composed of two kinds of layered phosphorous(β-P and δ-P) by ab initio quantum transport simulations. NDR effects have been observed in both in-plane and vertical heterostructures, and the effects become significant with the highest peak-to-valley ratio(PVR)when the intrinsic region length is near zero. Compared with the in-plane TFET based on β-P and δ-P, better performance with a higher on/off current ratio of - 10-6 and a steeper subthreshold swing(SS) of - 23 mV/dec is achieved in the vertical TFET. Such differences in the NDR effects, on/off current ratio and SS are attributed to the distinct interaction nature of theβ-P and δ-P layers in the in-plane and vertical heterostructures.