Nearly-zero energy buildings (NZEB) would effectively improve building energy efficiency and promote building electrification. By using a carbon emission model integrated into a bottom-up mid-to-long term energy consu...Nearly-zero energy buildings (NZEB) would effectively improve building energy efficiency and promote building electrification. By using a carbon emission model integrated into a bottom-up mid-to-long term energy consumption model, this study analyzes the contribution of NZEB standards to carbon emission targets in the urban area of China by 2060. Three scenarios are set, namely BAU, steady development (S1), and high-speed development (S2). For BAU, the total carbon emissions will reach a peak of 1.94 Gt CO_(2) by 2040. In S1 scenario, total building carbon emissions will reach the peak of 1.72 Gt CO_(2) by 2030. In S2 scenario, the carbon emissions will reach a peak by 2025 with 1.64 Gt CO_(2). Under S1 scenario, which features consistency with NZEB market development and periodic improvement of building energy-efficiency standards, the carbon emission peak in 2030 will be accomplished. To achieve carbon neutrality by 2060, the upgrading of building energy standards to NZEB will contribute 50.1%, while zero-carbon electricity contribution is 49.9%. It is concluded that 2025, 2030, and 2035 could be set as mandatory enforcement years for ultra-low energy buildings, NZEB and zero energy building (ZEB), respectively.展开更多
Energy efficiency improvement in Chinese construction has progressed rapidly over the past two decades.Nearly zero energy buildings(NZEBs),as an integrated solution for energy-efficient construction,have gained signif...Energy efficiency improvement in Chinese construction has progressed rapidly over the past two decades.Nearly zero energy buildings(NZEBs),as an integrated solution for energy-efficient construction,have gained significant attention during China's 13th Five-Year Plan period,with continuous maturation of the technical system.In this study,a research framework built upon the accomplishments of China's National Key Research and Development Program is developed,and an in-depth analysis of the most cutting-edge research is provided by thoroughly reviewing the work conducted earlier.Developing NZEB in China has been categorized into three stages based on the characteristics of technological development:(1)definition and standards,(2)demonstration and promotion,and(3)cross-domain integration.This study discerns four noteworthy development trends by examining comprehensive data spanning the last decade from 100 NZEB and zero energy building.Further,a comprehensive analysis of essential technology advancements in line with these identified trends is performed.The issues and challenges arising from the increased application of renewable energy in the context of China's carbon peak and carbon neutrality goals have also been discussed.Finally,based on this analysis,the challenges and corresponding suggestions for future research directions were proposed to help guide future studies exploring emerging trends in the NZEB field.展开更多
This study presents the thermal comfort and hygrothermal performance of building envelope of the first certified passive single-family detached house in Estonia.Temperature and humidity conditions were measured from d...This study presents the thermal comfort and hygrothermal performance of building envelope of the first certified passive single-family detached house in Estonia.Temperature and humidity conditions were measured from different rooms and building envelopes.This article presents analysis of measurement results during the first year after construction.Results showed high room temperature,achieved mainly due to large windows with southern exposure and the small heat loss of the building envelope.High indoor temperature decreased the indoor RH(relative humidity)to quite low levels.Even the RH was low,the moisture excess was high indicating that the design of PH(passive houses)indoor humidity loads cannot be decreased.Humidity in the externally insulated cross-laminated timber panels was observed to be high,caused by drying out of the constructional moisture and the high diffusion resistance of the wood fibre sheathing board.That caused water vapour condensation and risk for mould growth.In conclusion,while planning buildings with high-energy efficiency,more focused attention should be paid to the performance of the building service systems and moisture safety already in the preliminary stages of design.展开更多
The integrated application of multi-energy coupled technology in nearly zero-energy building(NZEB)is promising from the perspective of low-carbon development to achieve the goal of net zero energy.PVT(photovoltaic/the...The integrated application of multi-energy coupled technology in nearly zero-energy building(NZEB)is promising from the perspective of low-carbon development to achieve the goal of net zero energy.PVT(photovoltaic/thermal),air,and ground sources were combined organically to establish an experimental platform of a multi-source heat pump(MSHP)system,which can realize flexible switching of multi-energy sources.The paper presents the analytical hierarchy process and fuzzy comprehensive evaluation method to comprehensively evaluate the five modes of the MSHP system with regard to energy,economic and environmental benefits.The results indicate that the waste heat of the PVT cavity can improve the coefficient of performance of the heat pump unit(COP)by approximately 8.0%.The initial investment in air source heat pump(ASHP)modes is lower than that of a coal-powered system.The ground source heat pump(GSHP)modes have high stability and their payback period is 8.81–10.66 years.The photovoltaic/thermal-dual source heat pump(PVT-DSHP)mode presents the most appropriate system applied in the NZEB in severe cold region,followed by the DSHP,GSHP,ASHP,and PVT-ASHP mode.When compared with other modes,COP,annual saving cost,carbon dioxide emission reduction,and comprehensive value of the PVT-DSHP mode have improved by 7.07%–29.57%,2.21%–23.88%,3.38%–14.83%,and 27.91%–52.62%,respectively.The study provides important insights into the practical application and sustainable development of multi-energy coupled systems in the NZEB in severe cold region.展开更多
本文以青海省某近零能耗居住建筑为研究对象,基于TRNSYS软件构建了太阳能蓄热与新风预热耦合供暖仿真模拟系统。将MAR(mass area ratio,kg/m^2)作为核心分析指标,通过设定15种工况,对太阳能蓄热与新风预热耦合供暖系统的蓄热特性进行分...本文以青海省某近零能耗居住建筑为研究对象,基于TRNSYS软件构建了太阳能蓄热与新风预热耦合供暖仿真模拟系统。将MAR(mass area ratio,kg/m^2)作为核心分析指标,通过设定15种工况,对太阳能蓄热与新风预热耦合供暖系统的蓄热特性进行分析。通过对太阳能保证率、全生命周期增量成本投资回收期和初投资增量成本投资回收期等指标分析,对MAR指标进行优化,提出适用于严寒地区近零能耗居住建筑的太阳能蓄热与新风预热耦合供暖系统的MAR建议取值为60~100kg/m^2。展开更多
According to the few researches on Nearly zero energy residential buildings(NZERB)in hot-summer and cold-winter zone,although it could reduce the cooling load of buildings due to its high thermal insulation and air ti...According to the few researches on Nearly zero energy residential buildings(NZERB)in hot-summer and cold-winter zone,although it could reduce the cooling load of buildings due to its high thermal insulation and air tightness,it still needed for certain cooling in summer.This paper studied indoor environment of NZERB un-der three kinds of air-conditioners(split-type air-conditioner,multi-line air-conditioner and ceiling radiant air-conditioner).Firstly,a simulation model of NZERB was established based on Nanjing,a typical city in hot-summer and cold-winter zone.Secondly,variation of indoor air temperature and building load characteristics with outdoor air temperature were studied.Thirdly,indoor environment and energy consumption under three selected con-ventional air-conditioners in summer were simulated.Finally,the discussion was given,and an air-conditioner combining with convective and radiant cooling were proposed.The results indicated that the air-conditioner needed to be turned on in NZERB in hot-summer and cold-winter zone due to the room air temperature in off-air condition ranged from 32℃to 36℃,which was higher than designed indoor environment temperature in sum-mer,but the indoor environment of NZERB under three selected conventional air-conditioners could not meet the requirements of energy saving and comfort at the same time,and a proposed convective-radiant air-conditioner could be fast,stable,and energy saving.The findings can provide a reference for conducting active technology in NZERB.展开更多
Nearly zero energy buildings (nZEB) will become an obligatory energy efficiency standard in Europe. Following to common guidelines in European legislation, the countries investigated technical and economic framework f...Nearly zero energy buildings (nZEB) will become an obligatory energy efficiency standard in Europe. Following to common guidelines in European legislation, the countries investigated technical and economic framework for the preparation of detailed national technical definition of nZEB. Slovenia accepted the nZEB criteria in early 2015. This paper describes the technical and economic background for identification of economically viable concepts of highly energy efficient apartment building. The highrise demonstration building Eco Silver House revealed that meeting nZEB standards was not an easy task, not so much for technical reasons, but mostly due to the processes, inadequate skills, not fully compliant regulation and insufficient possibilities for interaction between the building and energy networks. Analysis of cost effectiveness showed that the Eco Silver House fulfilled minimal requirements of cost-optimal for apartment building with Net Present Value of 272 EUR/m2 and Primary energy use of 79 kWh/ m2?a in line with the Slovenian national cost optimal study of minimum energy performance requirements from the year 2014. At the time, the requirement of 50% share of renewables in final energy use is not fulfilled, but will be easily reached when EU2020 energy efficiency targets set in the Slovenian Energy Act regarding the RES share in district heating systems and public power grid will be gradually implemented. The demonstration project FP7 EE-HIGHRISE confirms that in spite of the barriers, the nZEB minimum requirements defined on profound theoretical studies can be met in practice.展开更多
基金This study was financially supported by the National Key R&D Program of China“Research on Optimal Configuration and Demand Response of Energy Storage Technology in Nearly-zero Energy Community(2019YFE0193100)”.
文摘Nearly-zero energy buildings (NZEB) would effectively improve building energy efficiency and promote building electrification. By using a carbon emission model integrated into a bottom-up mid-to-long term energy consumption model, this study analyzes the contribution of NZEB standards to carbon emission targets in the urban area of China by 2060. Three scenarios are set, namely BAU, steady development (S1), and high-speed development (S2). For BAU, the total carbon emissions will reach a peak of 1.94 Gt CO_(2) by 2040. In S1 scenario, total building carbon emissions will reach the peak of 1.72 Gt CO_(2) by 2030. In S2 scenario, the carbon emissions will reach a peak by 2025 with 1.64 Gt CO_(2). Under S1 scenario, which features consistency with NZEB market development and periodic improvement of building energy-efficiency standards, the carbon emission peak in 2030 will be accomplished. To achieve carbon neutrality by 2060, the upgrading of building energy standards to NZEB will contribute 50.1%, while zero-carbon electricity contribution is 49.9%. It is concluded that 2025, 2030, and 2035 could be set as mandatory enforcement years for ultra-low energy buildings, NZEB and zero energy building (ZEB), respectively.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFC3803300)。
文摘Energy efficiency improvement in Chinese construction has progressed rapidly over the past two decades.Nearly zero energy buildings(NZEBs),as an integrated solution for energy-efficient construction,have gained significant attention during China's 13th Five-Year Plan period,with continuous maturation of the technical system.In this study,a research framework built upon the accomplishments of China's National Key Research and Development Program is developed,and an in-depth analysis of the most cutting-edge research is provided by thoroughly reviewing the work conducted earlier.Developing NZEB in China has been categorized into three stages based on the characteristics of technological development:(1)definition and standards,(2)demonstration and promotion,and(3)cross-domain integration.This study discerns four noteworthy development trends by examining comprehensive data spanning the last decade from 100 NZEB and zero energy building.Further,a comprehensive analysis of essential technology advancements in line with these identified trends is performed.The issues and challenges arising from the increased application of renewable energy in the context of China's carbon peak and carbon neutrality goals have also been discussed.Finally,based on this analysis,the challenges and corresponding suggestions for future research directions were proposed to help guide future studies exploring emerging trends in the NZEB field.
基金supported by the European Union through the European Regional Development Fundthe“Reducing the Environmental Impact of Buildings through Improvements of Energy Performance,AR12059”(financed by SA Archimedes)IUT1-15 project“Nearly-Zero Energy Solutions and Their Implementation on Deep Renovation of Buildings”(financed by the Estonian Research Council).
文摘This study presents the thermal comfort and hygrothermal performance of building envelope of the first certified passive single-family detached house in Estonia.Temperature and humidity conditions were measured from different rooms and building envelopes.This article presents analysis of measurement results during the first year after construction.Results showed high room temperature,achieved mainly due to large windows with southern exposure and the small heat loss of the building envelope.High indoor temperature decreased the indoor RH(relative humidity)to quite low levels.Even the RH was low,the moisture excess was high indicating that the design of PH(passive houses)indoor humidity loads cannot be decreased.Humidity in the externally insulated cross-laminated timber panels was observed to be high,caused by drying out of the constructional moisture and the high diffusion resistance of the wood fibre sheathing board.That caused water vapour condensation and risk for mould growth.In conclusion,while planning buildings with high-energy efficiency,more focused attention should be paid to the performance of the building service systems and moisture safety already in the preliminary stages of design.
基金the National Key R&D Program of China“Research and Integrated Demonstration on Suitable Technology of Net Zero Energy Building”(No.2019YFE0100300)the National Natural Science Foundation of China(No.51778376)+1 种基金the Key Project of Education Department of Liaoning Province“Multi-objective Optimization Design and Key Technologies of Zero-Carbon and Zero-Energy Buildings in Cold Regions”(No.LJKZ0577)the Shenyang Science and Technology Planning Project“Research on Key Technologies of Multi-energy Coupling and Clean Emission Reduction of Zero-energy and Zero-carbon Buildings in Cold Regions”(No.21-108-9-03).
文摘The integrated application of multi-energy coupled technology in nearly zero-energy building(NZEB)is promising from the perspective of low-carbon development to achieve the goal of net zero energy.PVT(photovoltaic/thermal),air,and ground sources were combined organically to establish an experimental platform of a multi-source heat pump(MSHP)system,which can realize flexible switching of multi-energy sources.The paper presents the analytical hierarchy process and fuzzy comprehensive evaluation method to comprehensively evaluate the five modes of the MSHP system with regard to energy,economic and environmental benefits.The results indicate that the waste heat of the PVT cavity can improve the coefficient of performance of the heat pump unit(COP)by approximately 8.0%.The initial investment in air source heat pump(ASHP)modes is lower than that of a coal-powered system.The ground source heat pump(GSHP)modes have high stability and their payback period is 8.81–10.66 years.The photovoltaic/thermal-dual source heat pump(PVT-DSHP)mode presents the most appropriate system applied in the NZEB in severe cold region,followed by the DSHP,GSHP,ASHP,and PVT-ASHP mode.When compared with other modes,COP,annual saving cost,carbon dioxide emission reduction,and comprehensive value of the PVT-DSHP mode have improved by 7.07%–29.57%,2.21%–23.88%,3.38%–14.83%,and 27.91%–52.62%,respectively.The study provides important insights into the practical application and sustainable development of multi-energy coupled systems in the NZEB in severe cold region.
文摘本文以青海省某近零能耗居住建筑为研究对象,基于TRNSYS软件构建了太阳能蓄热与新风预热耦合供暖仿真模拟系统。将MAR(mass area ratio,kg/m^2)作为核心分析指标,通过设定15种工况,对太阳能蓄热与新风预热耦合供暖系统的蓄热特性进行分析。通过对太阳能保证率、全生命周期增量成本投资回收期和初投资增量成本投资回收期等指标分析,对MAR指标进行优化,提出适用于严寒地区近零能耗居住建筑的太阳能蓄热与新风预热耦合供暖系统的MAR建议取值为60~100kg/m^2。
基金The authors acknowledge the financial support from“CAS Key Lab-oratory of Cryogenics,TIPC(Grant No.CRY0201801)”.
文摘According to the few researches on Nearly zero energy residential buildings(NZERB)in hot-summer and cold-winter zone,although it could reduce the cooling load of buildings due to its high thermal insulation and air tightness,it still needed for certain cooling in summer.This paper studied indoor environment of NZERB un-der three kinds of air-conditioners(split-type air-conditioner,multi-line air-conditioner and ceiling radiant air-conditioner).Firstly,a simulation model of NZERB was established based on Nanjing,a typical city in hot-summer and cold-winter zone.Secondly,variation of indoor air temperature and building load characteristics with outdoor air temperature were studied.Thirdly,indoor environment and energy consumption under three selected con-ventional air-conditioners in summer were simulated.Finally,the discussion was given,and an air-conditioner combining with convective and radiant cooling were proposed.The results indicated that the air-conditioner needed to be turned on in NZERB in hot-summer and cold-winter zone due to the room air temperature in off-air condition ranged from 32℃to 36℃,which was higher than designed indoor environment temperature in sum-mer,but the indoor environment of NZERB under three selected conventional air-conditioners could not meet the requirements of energy saving and comfort at the same time,and a proposed convective-radiant air-conditioner could be fast,stable,and energy saving.The findings can provide a reference for conducting active technology in NZERB.
基金The research presented in this paper is a part of the research and demonstration project FP7 EE-Highrise—Energy efficient demo multi-residential high-rise building supported by the European Commission within the 7th Framework Programme(FP7-2011-NMP-ENV-ENERGY-ICT-EEB)(2013-2015)(www.ee-highrise.eu).
文摘Nearly zero energy buildings (nZEB) will become an obligatory energy efficiency standard in Europe. Following to common guidelines in European legislation, the countries investigated technical and economic framework for the preparation of detailed national technical definition of nZEB. Slovenia accepted the nZEB criteria in early 2015. This paper describes the technical and economic background for identification of economically viable concepts of highly energy efficient apartment building. The highrise demonstration building Eco Silver House revealed that meeting nZEB standards was not an easy task, not so much for technical reasons, but mostly due to the processes, inadequate skills, not fully compliant regulation and insufficient possibilities for interaction between the building and energy networks. Analysis of cost effectiveness showed that the Eco Silver House fulfilled minimal requirements of cost-optimal for apartment building with Net Present Value of 272 EUR/m2 and Primary energy use of 79 kWh/ m2?a in line with the Slovenian national cost optimal study of minimum energy performance requirements from the year 2014. At the time, the requirement of 50% share of renewables in final energy use is not fulfilled, but will be easily reached when EU2020 energy efficiency targets set in the Slovenian Energy Act regarding the RES share in district heating systems and public power grid will be gradually implemented. The demonstration project FP7 EE-HIGHRISE confirms that in spite of the barriers, the nZEB minimum requirements defined on profound theoretical studies can be met in practice.