针对非线性、多模态间歇过程的故障检测问题,提出一种基于邻域保持嵌入的支持向量数据描述(support vector data description based on neighborhood preserving embedding, NPE-SVDD)故障检测策略.首先,利用NPE算法将原始数据降维到特...针对非线性、多模态间歇过程的故障检测问题,提出一种基于邻域保持嵌入的支持向量数据描述(support vector data description based on neighborhood preserving embedding, NPE-SVDD)故障检测策略.首先,利用NPE算法将原始数据降维到特征空间.接下来,在特征空间建立SVDD模型,计算超球体的球心O和半径R.对于测试样本,计算其到球心的距离D,对比D与R的大小确定样本状态.检测样本状态后,应用距离贡献图法进行故障变量定位分析. NPE算法可以保留原始数据的局部信息;并通过结合SVDD分类规则代替原始NPE算法的T2和SPE统计量,消除了数据服从高斯分布的限制,提高了故障检测率.利用数值模拟过程和半导体蚀刻过程仿真,将实验结果与主元分析(principal component analysis, PCA)、 NPE、 SVDD等方法进行对比分析,验证了NPE-SVDD方法的有效性.展开更多
Complex industrial process often contains multiple operating modes, and the challenge of multimode process monitoring has recently gained much attention. However, most multivariate statistical process monitoring (MSPM...Complex industrial process often contains multiple operating modes, and the challenge of multimode process monitoring has recently gained much attention. However, most multivariate statistical process monitoring (MSPM) methods are based on the assumption that the process has only one nominal mode. When the process data contain different distributions, they may not function as well as in single mode processes. To address this issue, an improved partial least squares (IPLS) method was proposed for multimode process monitoring. By utilizing a novel local standardization strategy, the normal data in multiple modes could be centralized after being standardized and the fundamental assumption of partial least squares (PLS) could be valid again in multimode process. In this way, PLS method was extended to be suitable for not only single mode processes but also multimode processes. The efficiency of the proposed method was illustrated by comparing the monitoring results of PLS and IPLS in Tennessee Eastman(TE) process.展开更多
Traditional data driven fault detection methods assume unimodal distribution of process data so that they often perform not well in chemical process with multiple operating modes. In order to monitor the multimode che...Traditional data driven fault detection methods assume unimodal distribution of process data so that they often perform not well in chemical process with multiple operating modes. In order to monitor the multimode chemical process effectively, this paper presents a novel fault detection method based on local neighborhood similarity analysis(LNSA). In the proposed method, prior process knowledge is not required and only the multimode normal operation data are used to construct a reference dataset. For online monitoring of process state, LNSA applies moving window technique to obtain a current snapshot data window. Then neighborhood searching technique is used to acquire the corresponding local neighborhood data window from the reference dataset. Similarity analysis between snapshot and neighborhood data windows is performed, which includes the calculation of principal component analysis(PCA) similarity factor and distance similarity factor. The PCA similarity factor is to capture the change of data direction while the distance similarity factor is used for monitoring the shift of data center position. Based on these similarity factors, two monitoring statistics are built for multimode process fault detection. Finally a simulated continuous stirred tank system is used to demonstrate the effectiveness of the proposed method. The simulation results show that LNSA can detect multimode process changes effectively and performs better than traditional fault detection methods.展开更多
基金National Natural Science Foundation of China ( No. 61074079) Shanghai Leading Academic Discipline Project,China ( No.B504)
文摘Complex industrial process often contains multiple operating modes, and the challenge of multimode process monitoring has recently gained much attention. However, most multivariate statistical process monitoring (MSPM) methods are based on the assumption that the process has only one nominal mode. When the process data contain different distributions, they may not function as well as in single mode processes. To address this issue, an improved partial least squares (IPLS) method was proposed for multimode process monitoring. By utilizing a novel local standardization strategy, the normal data in multiple modes could be centralized after being standardized and the fundamental assumption of partial least squares (PLS) could be valid again in multimode process. In this way, PLS method was extended to be suitable for not only single mode processes but also multimode processes. The efficiency of the proposed method was illustrated by comparing the monitoring results of PLS and IPLS in Tennessee Eastman(TE) process.
基金Supported by the National Natural Science Foundation of China(61273160,61403418)the Natural Science Foundation of Shandong Province(ZR2011FM014)+1 种基金the Fundamental Research Funds for the Central Universities(10CX04046A)the Doctoral Fund of Shandong Province(BS2012ZZ011)
文摘Traditional data driven fault detection methods assume unimodal distribution of process data so that they often perform not well in chemical process with multiple operating modes. In order to monitor the multimode chemical process effectively, this paper presents a novel fault detection method based on local neighborhood similarity analysis(LNSA). In the proposed method, prior process knowledge is not required and only the multimode normal operation data are used to construct a reference dataset. For online monitoring of process state, LNSA applies moving window technique to obtain a current snapshot data window. Then neighborhood searching technique is used to acquire the corresponding local neighborhood data window from the reference dataset. Similarity analysis between snapshot and neighborhood data windows is performed, which includes the calculation of principal component analysis(PCA) similarity factor and distance similarity factor. The PCA similarity factor is to capture the change of data direction while the distance similarity factor is used for monitoring the shift of data center position. Based on these similarity factors, two monitoring statistics are built for multimode process fault detection. Finally a simulated continuous stirred tank system is used to demonstrate the effectiveness of the proposed method. The simulation results show that LNSA can detect multimode process changes effectively and performs better than traditional fault detection methods.