期刊文献+

一种改进的多模态过程故障检测方法 被引量:3

An Improved Fault Detection Method for Multimode Processes
下载PDF
导出
摘要 针对传统单模态故障检测方法对多模态工业过程故障检测准确率和效率低的问题,提出将变分模态分解(VMD),独立主元分析(ICA)和核主成分分析KPCA相结合的联合故障检测方法 VMD-IKPCA应用于多模态故障检测。首先,在对样本数据进行模态聚类之后,应用VMD对多模态过程数据进行滤波、降噪处理,通过ICA对处理过后的数据进行主元提取并应用KPCA对提取的主元变量进行故障检测。该方法的有效性通过多模态TE过程的故障检测进行验证,并与传统KPCA方法进行比较。实验结果表明,VMD-IKPCA对多模态过程故障检测有效性好,准确率高。 In order to solve the low accuracy and efficiency problem of traditional single mode fault detection methods for multimode processes, a novel IKPCA method is proposed based on variational mode decomposition (VMD). Firstly, after the modal clustering of the sample data and for the sake of filtering the data better, the VMD algorithm is introduced. Then, with the application of independent component analysis ( ICA), it can extract the prin- cipal components from the processed data. Finally, the extracted main variables are sent to KPCA for fault diagnosis. The feasibility and validity of the proposed strategies are demon- strated through the Tennessee Eastman (TE) process. Compared with the conventional KP- CA, simulation results show that VMD-IKPCA is an effective and accurate method in multi- mode process fault detection.
作者 杨青 马贵昌 YANG Qing MA Guichang(Shenyang Ligong University, Shenyang 110159, China)
出处 《沈阳理工大学学报》 CAS 2017年第3期48-53,共6页 Journal of Shenyang Ligong University
基金 辽宁省教育厅科学技术研究项目(L2014083 L2015467) 辽宁省自然科学基金指导计划项目(201602651) 辽宁省重点实验室开放基金项目(4771004kfs55)
关键词 多模态过程 故障检测 VMD IKPCA TE过程 multimode process fault detection VMD IKPCA TE process
  • 相关文献

参考文献4

二级参考文献36

  • 1陆宁云,王福利,高福荣,王姝.间歇过程的统计建模与在线监测[J].自动化学报,2006,32(3):400-410. 被引量:61
  • 2刘毅,王海清.基于LS-SVM和Pensim仿真平台的青霉素发酵过程建模[J].化学反应工程与工艺,2006,22(3):252-258. 被引量:10
  • 3刘毅,王海清.Pensim仿真平台在青霉素发酵过程的应用研究[J].系统仿真学报,2006,18(12):3524-3527. 被引量:44
  • 4Wang X, Kruger U, Irwin G W. Process monitoring approach using fast moving window PCA [J].Industrial & Engineering Chemistry Research, 2005, 44 (15) : 5691- 5702. 被引量:1
  • 5Liu X Q, Kruger U, Littler T, Xie L, Wang S Q. Moving window kernel PCA for adaptive monitoring of nonlinear processes[J]. Chemometrics - Intelligent Laboratory Systems, 2009, 96 (2): 32-143. 被引量:1
  • 6Chen J H, Liu J L. Mixture principal component analysis models for process monitoring[J].Industrial & Engineering Chemistry Research, 1999, 38 (4) : 1478- 1488. 被引量:1
  • 7Liu J L, Chen D S. Fault detection and identification using modified Bayesian classification on PCA subspace [J]. Industrial & Engineering Chemistry Research, 2009, 48 (6) : 3059-3077. 被引量:1
  • 8Ge Z, Song Z. Mixture Bayesian regularization method of PPCA for multimode process monitoring [J]. AIChE Journal, 2010, S6 (11) : 2838-2849. 被引量:1
  • 9Ng Y S, Srinivasan R. An adjoined multi-model approach for monitoring batch and transient operations [J]. Computers&Chemical Engineering, 2009, 33 (4) : 887-902. 被引量:1
  • 10Lee Y H, Jin H D, Han C H. On-line process state classification for adaptive monitoring [J]. Industrial Engineering Chemistry Research, 2006, 45 (9) : 3095- 3107. 被引量:1

共引文献23

同被引文献24

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部