Organic–inorganic halide perovskites have received widespread attention thanks to their strong light absorption,long carrier diffusion lengths,tunable bandgaps,and low temperature processing.Single-junction perovskit...Organic–inorganic halide perovskites have received widespread attention thanks to their strong light absorption,long carrier diffusion lengths,tunable bandgaps,and low temperature processing.Single-junction perovskite solar cells(PSCs)have achieved a boost of the power conversion efficiency(PCE)from 3.8%to 25.2%in just a decade.With the continuous growth of PCE in single-junction PSCs,exploiting of monolithic all-perovskite tandem solar cells is now an important strategy to go beyond the efficiency available in single-junction PSCs.In this review,we first introduce the structure and operation mechanism of monolithic all-perovskite tandem solar cell.We then summarize recent progress in monolithic all-perovskite tandem solar cells from the perspectives of different structural units in the device:tunnel recombination junction,wide-bandgap top subcell,and narrow-bandgap bottom subcell.Finally,we provide our insights into the challenges and scientific issues remaining in this rapidly developing research field.展开更多
Monolithic stability safety and reinforcement based on monolithic stability are very important for arch dam design. In this paper, the issue is addressed based on deformation reinforcement theory. In this approach, pl...Monolithic stability safety and reinforcement based on monolithic stability are very important for arch dam design. In this paper, the issue is addressed based on deformation reinforcement theory. In this approach, plastic complementary energy norm can be taken as safety index for monolithic stability. According to deformation reinforcement theory, the areas where unbalanced force exists require reinforcement, and the required reinforcement forces are just the unbalanced forces with opposite direction. Results show that areas with unbalanced force mainly concentrate in dam-toes, dam-heels and faults.展开更多
Highly efficient Co_(3)O_(4)/TiO_(2) monolithic catalysts with enhanced stability were in-situ grown on Ti mesh for CO oxidation,which could completely oxidize CO at 120℃.The comprehensive catalytic performance is co...Highly efficient Co_(3)O_(4)/TiO_(2) monolithic catalysts with enhanced stability were in-situ grown on Ti mesh for CO oxidation,which could completely oxidize CO at 120℃.The comprehensive catalytic performance is competitive to some noble metal catalysts and conventional Co_(3)O_(4) powder catalysts,which holds great potential toward industrial applications.Meanwhile,the in-situ synthesis strategy of Co_(3)O_(4)/TiO_(2) monolithic catalysts on flexible mesh substrate in this work can be extended to the development of a variety of oxide-based monolithic catalysts towards diverse catalysis applications.展开更多
基金financially supported by the National Key R&D Program of China(2018YFB1500102)National Natural Science Foundation of China(61974063)+2 种基金Natural Science Foundation of Jiangsu Province(BK20190315,BZ2018008)Program for Innovative Talents and Entrepreneur in JiangsuThousand Talent Program for Young Outstanding Scientists in China.
文摘Organic–inorganic halide perovskites have received widespread attention thanks to their strong light absorption,long carrier diffusion lengths,tunable bandgaps,and low temperature processing.Single-junction perovskite solar cells(PSCs)have achieved a boost of the power conversion efficiency(PCE)from 3.8%to 25.2%in just a decade.With the continuous growth of PCE in single-junction PSCs,exploiting of monolithic all-perovskite tandem solar cells is now an important strategy to go beyond the efficiency available in single-junction PSCs.In this review,we first introduce the structure and operation mechanism of monolithic all-perovskite tandem solar cell.We then summarize recent progress in monolithic all-perovskite tandem solar cells from the perspectives of different structural units in the device:tunnel recombination junction,wide-bandgap top subcell,and narrow-bandgap bottom subcell.Finally,we provide our insights into the challenges and scientific issues remaining in this rapidly developing research field.
文摘Monolithic stability safety and reinforcement based on monolithic stability are very important for arch dam design. In this paper, the issue is addressed based on deformation reinforcement theory. In this approach, plastic complementary energy norm can be taken as safety index for monolithic stability. According to deformation reinforcement theory, the areas where unbalanced force exists require reinforcement, and the required reinforcement forces are just the unbalanced forces with opposite direction. Results show that areas with unbalanced force mainly concentrate in dam-toes, dam-heels and faults.
基金partially supported by the National Natural Science Foundation of China(No.51872296)the Joint Fund between Shenyang National Laboratory for Materials Science and State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals(No.18LHPY012)。
文摘Highly efficient Co_(3)O_(4)/TiO_(2) monolithic catalysts with enhanced stability were in-situ grown on Ti mesh for CO oxidation,which could completely oxidize CO at 120℃.The comprehensive catalytic performance is competitive to some noble metal catalysts and conventional Co_(3)O_(4) powder catalysts,which holds great potential toward industrial applications.Meanwhile,the in-situ synthesis strategy of Co_(3)O_(4)/TiO_(2) monolithic catalysts on flexible mesh substrate in this work can be extended to the development of a variety of oxide-based monolithic catalysts towards diverse catalysis applications.