MicroRNAs play important roles in post-transcriptional regulation of gene expression by inhibiting protein translation and/or promoting mRNA degradation.Importantly,biogenesis of microRNAs displays specific temporal a...MicroRNAs play important roles in post-transcriptional regulation of gene expression by inhibiting protein translation and/or promoting mRNA degradation.Importantly,biogenesis of microRNAs displays specific temporal and spatial profiles in distinct cell and tissue types and hence affects a broad spectrum of biological functions in normal cell growth and tumor development.Recent discoveries have revealed sophisticated mechanisms that control microRNA production and homeostasis in response to developmental and extracellular signals.Moreover,a link between dysregulation of microRNAs and human brain disorders has become increasingly evident.In this review,we focus on recent advances in understanding the regulation of microRNA biogenesis and function in neuronal and glial development in the mammalian brain,and dysregulation of the microRNA pathway in neurodevelopmental and neurodegenerative diseases.展开更多
The recent development of gene transfer approaches in plants and animals has revealed that transgene can undergo silencing after integration in the genome. Host genes can also be silenced as a consequence of the prese...The recent development of gene transfer approaches in plants and animals has revealed that transgene can undergo silencing after integration in the genome. Host genes can also be silenced as a consequence of the presence of a homologous transgene. More and more investigations have demonstrated that double- stranded RNA can silence genes by triggering degradation of homologous RNA in the cytoplasm and by directing methylation of homologous nuclear DNA sequences. Analyses of Arabidopsis mutants and plant viral suppressors of silencing are unraveling RNA-silencing mechanisms and are assessing the role of methy- lation in transcriptional and posttranscriptional gene silencing. This review will focus on double-stranded RNA mediated mRNA degradation and gene inactivation in plants.展开更多
Aberrant expression of microRNAs(miRNAs)was reported frequently in different human cancers.The major role of miRNA is targeting 30-UTR of coding gene and causing translational repression or mRNA degradation.miR-10b ov...Aberrant expression of microRNAs(miRNAs)was reported frequently in different human cancers.The major role of miRNA is targeting 30-UTR of coding gene and causing translational repression or mRNA degradation.miR-10b overexpression was reported to promote breast cancer metastasis by up-regulating RHOC expression.But its expression in hepatocellular carcinoma(HCC)remains unclear.Our study indicated that the expression of miR-10b was different in HCC and adjacent tissue samples,and reduced expression of miR-10b in HCC was related tovein invasion.High-level expression of RHOC was also related to vein invasion in HCC.But no correlation was found between miR-10b and RHOC expression.These results suggest that miR-10b and RHOC are independent predictors of HCC invasion and metastasis.展开更多
Eukaryotic gene expression is controlled by different levels of biological events, such as transcription factors regulating the timing and strength of transcripts production, alteration of transcription rate by RNA pr...Eukaryotic gene expression is controlled by different levels of biological events, such as transcription factors regulating the timing and strength of transcripts production, alteration of transcription rate by RNA processing, and mRNA stability during RNA processing and translation. RNAs, especially mRNAs, are relatively vulnerable molecules in living cells for ribonucleases (RNases). The maintenance of quality and quantity of transcripts is a key issue for many biological processes. Extensive studies draw the conclusion that the stability of RNAs is dedicated-regulated, occurring co- and post-transcriptionally, and translation-coupled as well, either in the nucleus or cytoplasm. Recently, RNA stability in the nucleus has aroused much research interest, especially the stability of newly-made transcripts. In this article, we summarize recent progresses on mRNA stability in the nucleus, especially focusing on quality control of newly-made RNA by RNA polymerase Ⅱ in eukaryotes.展开更多
RNA interference (RNAi) is a process by which introduced small interfering RNA (siRNA) can cause the specific degradation of mRNA with identical sequences. The human herpes simplex virus type 1 (HSV-1) RR is composed ...RNA interference (RNAi) is a process by which introduced small interfering RNA (siRNA) can cause the specific degradation of mRNA with identical sequences. The human herpes simplex virus type 1 (HSV-1) RR is composed of two distinct homodimeric subunits encoded by UL39 and UL40,respectively. In this study,we applied siRNAs targeting the UL39 and UL40 genes of HSV-1. We showed that synthetic siRNA silenced effectively and specifically UL39 and UL40 mRNA expression and inhibited HSV-1 replication. Our work offers new possibilities for RNAi as a genetic tool for inhibition of HSV-1 replication.展开更多
文摘MicroRNAs play important roles in post-transcriptional regulation of gene expression by inhibiting protein translation and/or promoting mRNA degradation.Importantly,biogenesis of microRNAs displays specific temporal and spatial profiles in distinct cell and tissue types and hence affects a broad spectrum of biological functions in normal cell growth and tumor development.Recent discoveries have revealed sophisticated mechanisms that control microRNA production and homeostasis in response to developmental and extracellular signals.Moreover,a link between dysregulation of microRNAs and human brain disorders has become increasingly evident.In this review,we focus on recent advances in understanding the regulation of microRNA biogenesis and function in neuronal and glial development in the mammalian brain,and dysregulation of the microRNA pathway in neurodevelopmental and neurodegenerative diseases.
文摘The recent development of gene transfer approaches in plants and animals has revealed that transgene can undergo silencing after integration in the genome. Host genes can also be silenced as a consequence of the presence of a homologous transgene. More and more investigations have demonstrated that double- stranded RNA can silence genes by triggering degradation of homologous RNA in the cytoplasm and by directing methylation of homologous nuclear DNA sequences. Analyses of Arabidopsis mutants and plant viral suppressors of silencing are unraveling RNA-silencing mechanisms and are assessing the role of methy- lation in transcriptional and posttranscriptional gene silencing. This review will focus on double-stranded RNA mediated mRNA degradation and gene inactivation in plants.
基金supported by the National Basic Research Program of China (2012CB934002, 2010CB912802)National High-tech R&D Program of China (2012AA02A203, 2012AA02A209, 2012AA02A504)+2 种基金National Key Scientific instrument Special Program of China (2011YQ03013405)the National Natural Science Foundation of China (81121004, 81071953, 81161120432)National Key Scientific Research Program of China (Grant No. 2010CB912801)
文摘Aberrant expression of microRNAs(miRNAs)was reported frequently in different human cancers.The major role of miRNA is targeting 30-UTR of coding gene and causing translational repression or mRNA degradation.miR-10b overexpression was reported to promote breast cancer metastasis by up-regulating RHOC expression.But its expression in hepatocellular carcinoma(HCC)remains unclear.Our study indicated that the expression of miR-10b was different in HCC and adjacent tissue samples,and reduced expression of miR-10b in HCC was related tovein invasion.High-level expression of RHOC was also related to vein invasion in HCC.But no correlation was found between miR-10b and RHOC expression.These results suggest that miR-10b and RHOC are independent predictors of HCC invasion and metastasis.
基金Project supported by the Talented Scientist Program from South China Agricultural University (No.4600-K14013)the National Natural Science Foundation of China (No.81301901)
文摘Eukaryotic gene expression is controlled by different levels of biological events, such as transcription factors regulating the timing and strength of transcripts production, alteration of transcription rate by RNA processing, and mRNA stability during RNA processing and translation. RNAs, especially mRNAs, are relatively vulnerable molecules in living cells for ribonucleases (RNases). The maintenance of quality and quantity of transcripts is a key issue for many biological processes. Extensive studies draw the conclusion that the stability of RNAs is dedicated-regulated, occurring co- and post-transcriptionally, and translation-coupled as well, either in the nucleus or cytoplasm. Recently, RNA stability in the nucleus has aroused much research interest, especially the stability of newly-made transcripts. In this article, we summarize recent progresses on mRNA stability in the nucleus, especially focusing on quality control of newly-made RNA by RNA polymerase Ⅱ in eukaryotes.
基金The Nation "863" Program of China(2006AA02A226)The Joint Funds of National Science Foundation of China (U0632010)+2 种基金The State KeyLaboratory of Phytochemistry and Plant Resources in West ChinaChinese Academy of Sciences (O807B11211, O807E21211)"211 grant of MOE"
文摘RNA interference (RNAi) is a process by which introduced small interfering RNA (siRNA) can cause the specific degradation of mRNA with identical sequences. The human herpes simplex virus type 1 (HSV-1) RR is composed of two distinct homodimeric subunits encoded by UL39 and UL40,respectively. In this study,we applied siRNAs targeting the UL39 and UL40 genes of HSV-1. We showed that synthetic siRNA silenced effectively and specifically UL39 and UL40 mRNA expression and inhibited HSV-1 replication. Our work offers new possibilities for RNAi as a genetic tool for inhibition of HSV-1 replication.