The assembling stabilizing effect of the finite Larmor radius (FLR) and the sheared axial flow (SAF) on the Rayleigh-Taylor instability in Z-pinch implosions is studied by means of the incompressible finite Larmor rad...The assembling stabilizing effect of the finite Larmor radius (FLR) and the sheared axial flow (SAF) on the Rayleigh-Taylor instability in Z-pinch implosions is studied by means of the incompressible finite Larmor radius magnetohydrodynamic (MHD) equations. The finite Larmor radius effects are introduced in the momentum equation with the sheared axial flow through an anisotropic ion stress tensor. In this paper a linear mode equation is derived that is valid for arbitrary kL, where k is the wave number and L is the plasma shell thickness. Numerical solutions are presented. The results indicate that the short-wavelength modes of the Rayleigh-Taylor instability are easily stabilized by the individual effect of the finite Larmor radius or the sheared axial flow. The assembling effects of the finite Larmor radius and sheared axial flow can heavily mitigate the Rayleigh-Taylor instability, and the unstable region can be compressed considerably.展开更多
The laser-pumped potassium spin-exchange relaxation free (SERF) magnetometer is the most sensitive detector of magnetic field and has many important applications. We present the experimental results of our potassium...The laser-pumped potassium spin-exchange relaxation free (SERF) magnetometer is the most sensitive detector of magnetic field and has many important applications. We present the experimental results of our potassium SERF magne- tometer. A pump-probe approach is used to identify the unique spin dynamics of the atomic ensemble in the SERF regime. A single channel sensitivity of 8 f.THz-1/2 is achieved with our SERF magnetometer.展开更多
A big enough transverse magnetic field applied to soft magnetic ferrite toroid can magnetize the ferrite to a saturation level in transverse direction and almost completely suppresses magnetic domain structures in the...A big enough transverse magnetic field applied to soft magnetic ferrite toroid can magnetize the ferrite to a saturation level in transverse direction and almost completely suppresses magnetic domain structures in the ferrite,the response to the longitudinal alternating electromagnetic field changes from the original domain wall displacements and spin rotations to the precession of magnetization around the transverse field,and the hysteresis loss disappears in the ferrites.Both theoretical and experimental results indicate that the permeability and magnetic loss in the ferrite can be controlled by adjusting the transverse magnetic field.A higher Q value with relatively low permeability can be achieved by increasing the transverse field,which ensures that the ferrite can be operated at high frequencies,with magnetic loss being very low.展开更多
It is well known that the spin operators of a quantum particle must obey uncertainty relations. We use the uncertainty principle to study the Larmor clock. To avoid breaking the uncertainty principle, Larmor time can ...It is well known that the spin operators of a quantum particle must obey uncertainty relations. We use the uncertainty principle to study the Larmor clock. To avoid breaking the uncertainty principle, Larmor time can be defined as the ratio of the phase difference between a spin-up particle and a spin-down particle to the corresponding Larmor frequency. The connection between the dwell time and the Larmor time has also been confirmed. Moreover, the results show that the behavior of the Larmor time depends on the height and width of the barrier.展开更多
A magnetohydrodynamic (MHD) formulation is derived to investigate and compare the mitigation effects of both the sheared axial flow and finite Larmor radius (FLR) on the Rayleigh-Taylor (RT) instability in Z-pinch imp...A magnetohydrodynamic (MHD) formulation is derived to investigate and compare the mitigation effects of both the sheared axial flow and finite Larmor radius (FLR) on the Rayleigh-Taylor (RT) instability in Z-pinch implosions. The sheared axial flow is introduced into MHD equations in a conventional way and the FLR effect into the equations via /t → -i(w+ik⊥2pi2Ωi,), as proposed in our previous paper [Chin. Phys. Lett. 2002, 19:217] , where k⊥2 pi2 is referred to FLR effect from the general kinetic theory of magnetized plasma. Therefore the linearized continuity and momentum equations for the perturbed mass-density and velocity include both the sheared axial flow and the FLR effect. It is found that the effect of sheared axial flow with a lower peak velocity can mitigate RT instability in the whole wavenumber region and the effect of sheared axial flow with a higher one can mitigate RT instability only in the large wavenumber region (for normalized wavenumber k】2.4); The effect of FLR can mitigate RT instability in the whole wavenumber region and the mitigation effect is stronger than that of the sheared axial flow with a lower peak velocity in the almost whole wavenumber region.展开更多
A superluminescent diode (SLD) as an alternative of laser is used to detect optical rotation for atomic spin precession. A more uniform Gauss configuration without additional beam shaping and a relatively high power o...A superluminescent diode (SLD) as an alternative of laser is used to detect optical rotation for atomic spin precession. A more uniform Gauss configuration without additional beam shaping and a relatively high power of the SLD have a potential for atomic magnetometers, which is demonstrated in theory and experiments. In addition, the robustness and compactness enable a more practical way for optical rotation detections, especially for applications in magnetoencephalography systems.展开更多
In this paper, the effect of finite Larmor radius (FLR) on high n ballooning modes is studied on the basis of FLR magnetohydrodynamic (FLR-MHD) theory. A linear FLR ballooning mode equation is derived in an 's^--...In this paper, the effect of finite Larmor radius (FLR) on high n ballooning modes is studied on the basis of FLR magnetohydrodynamic (FLR-MHD) theory. A linear FLR ballooning mode equation is derived in an 's^-- α' type equilibrium of circular-flux-surfaces, which is reduced to the ideal ballooning mode equation when the FLR effect is neglected. The present model reproduces some basic features of FLR effects on ballooning mode obtained previously by kinetic ballooning mode theories. That is, the FLR introduces a real frequency into ballooning mode and has a stabilising effect on ballooning modes (e.g., in the case of high magnetic shear s^- ≥ 0.8). In particular, some new properties of FLR effects on ballooning mode are discovered in the present research. Here it is found that in a high magnetic shear region (s^- ≥ 0.8) the critical pressure gradient (αc,FLR) of ballooning mode is larger than the ideal one (αc,IMHD) and becomes larger and larger with the increase of FLR parameter b0. However, in a low magnetic shear region, the FLR ballooning mode is more unstable than the ideal one, and the αc,FLR is much lower than the αc,IMHD. Moreover, the present results indicate that there exist some new weaker instabilities near the second stability boundary (obtained from ideal MHD theory), which means that the second stable region becomes narrow.展开更多
During the last years some interesting experimental results have been reported for experiments in N2O, NO, NO dimer, H2, Toluene and BaFCH3 cluster. The main result consists in the observation of molecular beam deplet...During the last years some interesting experimental results have been reported for experiments in N2O, NO, NO dimer, H2, Toluene and BaFCH3 cluster. The main result consists in the observation of molecular beam depletion when the molecules of a pulsed beam interact with a static electric or magnetic field and an oscillating field (RF). In these cases, and as a main difference, instead of using four fields as in the original technique developed by I.I. Rabi and others, only two fields, those which configure the resonant unit, are used. That is, without using the nonhomogeneous magnetic fields. The depletion explanation for I.I. Rabi and others is based in the interaction between the molecular electric or magnetic dipole moment and the non-homogeneous fields. But, obviously, the change in the molecules trajectories observed on these new experiments has to be explained without considering the force provided by the field gradient because it happens without using non-homogeneous fields. In this paper a theoretical way for the explanation of these new experimental results is presented. One important point emerges as a result of this development, namely, the existence of an, until now unknown, spin-dependent force which would be responsible of the aforementioned deviation of the molecules.展开更多
We propose an in-situ method to calibrate the coil constants of the optical atomic magnetomete. This method is based on measuring the Larmor precession of spin polarized alkali metal atoms and has been demonstrated on...We propose an in-situ method to calibrate the coil constants of the optical atomic magnetomete. This method is based on measuring the Larmor precession of spin polarized alkali metal atoms and has been demonstrated on a K-Rb hybrid atomic magnetomete. Oscillation fields of different frequencies are swept on the transverse coil. By extracting the resonance frequency through phase-frequency analysis of electron spin projection, the coil constants are calibrated to be 323.1±0.28 nT/mA, 108±0.04nT/Ma, and 185.8±1.03 nT/mA along the X,Y, and Z directions, respectively.展开更多
A method for gyrokinetic simulation of low frequency(lower than the cyclotron frequency)magnetic compressional modes in general geometry is presented.The gyrokinetic-Maxwell system of equations is expressed fully in t...A method for gyrokinetic simulation of low frequency(lower than the cyclotron frequency)magnetic compressional modes in general geometry is presented.The gyrokinetic-Maxwell system of equations is expressed fully in terms of the compressional component of the magnetic perturbation,δBk,with finite Larmor radius effects.This introduces a"gyro-surface"averaging ofδBk in the gyrocenter equations of motion,and similarly in the perpendicular Ampere’s law,which takes the form of the perpendicular force balance equation.The resulting system can be numerically implemented by representing the gyro-surface averaging by a discrete sum in the configuration space.For the typical wavelength of interest(on the order of the gyroradius),the gyro-surface averaging can be reduced to averaging along an effective gyro-orbit.The phase space integration in the force balance equation can be approximated by summing over carefully chosen samples in the magnetic moment coordinate,allowing for an efficient numerical implementation.展开更多
基金The project supported by the National Natural Science Foundation of China (Nos. 10035020 and 40390150)
文摘The assembling stabilizing effect of the finite Larmor radius (FLR) and the sheared axial flow (SAF) on the Rayleigh-Taylor instability in Z-pinch implosions is studied by means of the incompressible finite Larmor radius magnetohydrodynamic (MHD) equations. The finite Larmor radius effects are introduced in the momentum equation with the sheared axial flow through an anisotropic ion stress tensor. In this paper a linear mode equation is derived that is valid for arbitrary kL, where k is the wave number and L is the plasma shell thickness. Numerical solutions are presented. The results indicate that the short-wavelength modes of the Rayleigh-Taylor instability are easily stabilized by the individual effect of the finite Larmor radius or the sheared axial flow. The assembling effects of the finite Larmor radius and sheared axial flow can heavily mitigate the Rayleigh-Taylor instability, and the unstable region can be compressed considerably.
基金supported by the National Natural Science Foundation of China(Grant No.61227902)
文摘The laser-pumped potassium spin-exchange relaxation free (SERF) magnetometer is the most sensitive detector of magnetic field and has many important applications. We present the experimental results of our potassium SERF magne- tometer. A pump-probe approach is used to identify the unique spin dynamics of the atomic ensemble in the SERF regime. A single channel sensitivity of 8 f.THz-1/2 is achieved with our SERF magnetometer.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2022YFB3504800 and 2021YFB3502400)the Key Research and Development Plan of Anhui Province,China(Grant No.202003c08020012)the Key Program of Education Department of Anhui Province,China(Grant No.KJ2019ZD03)。
文摘A big enough transverse magnetic field applied to soft magnetic ferrite toroid can magnetize the ferrite to a saturation level in transverse direction and almost completely suppresses magnetic domain structures in the ferrite,the response to the longitudinal alternating electromagnetic field changes from the original domain wall displacements and spin rotations to the precession of magnetization around the transverse field,and the hysteresis loss disappears in the ferrites.Both theoretical and experimental results indicate that the permeability and magnetic loss in the ferrite can be controlled by adjusting the transverse magnetic field.A higher Q value with relatively low permeability can be achieved by increasing the transverse field,which ensures that the ferrite can be operated at high frequencies,with magnetic loss being very low.
基金Supported by National Natural Science Foundation of China (10775068, 10735010, 10975072, 11035001)973 National Major State Basic Research and Development of China (2007CB815004, 2010CB327803)+1 种基金CAS Knowledge Innovation Project (KJCX2-SW-N02)Research Fund of Doctoral Point (RFDP) (20070284016, 20100091110028)
文摘It is well known that the spin operators of a quantum particle must obey uncertainty relations. We use the uncertainty principle to study the Larmor clock. To avoid breaking the uncertainty principle, Larmor time can be defined as the ratio of the phase difference between a spin-up particle and a spin-down particle to the corresponding Larmor frequency. The connection between the dwell time and the Larmor time has also been confirmed. Moreover, the results show that the behavior of the Larmor time depends on the height and width of the barrier.
基金This work was supported by the National Natural Science Foundation of China No.10035020.
文摘A magnetohydrodynamic (MHD) formulation is derived to investigate and compare the mitigation effects of both the sheared axial flow and finite Larmor radius (FLR) on the Rayleigh-Taylor (RT) instability in Z-pinch implosions. The sheared axial flow is introduced into MHD equations in a conventional way and the FLR effect into the equations via /t → -i(w+ik⊥2pi2Ωi,), as proposed in our previous paper [Chin. Phys. Lett. 2002, 19:217] , where k⊥2 pi2 is referred to FLR effect from the general kinetic theory of magnetized plasma. Therefore the linearized continuity and momentum equations for the perturbed mass-density and velocity include both the sheared axial flow and the FLR effect. It is found that the effect of sheared axial flow with a lower peak velocity can mitigate RT instability in the whole wavenumber region and the effect of sheared axial flow with a higher one can mitigate RT instability only in the large wavenumber region (for normalized wavenumber k】2.4); The effect of FLR can mitigate RT instability in the whole wavenumber region and the mitigation effect is stronger than that of the sheared axial flow with a lower peak velocity in the almost whole wavenumber region.
文摘A superluminescent diode (SLD) as an alternative of laser is used to detect optical rotation for atomic spin precession. A more uniform Gauss configuration without additional beam shaping and a relatively high power of the SLD have a potential for atomic magnetometers, which is demonstrated in theory and experiments. In addition, the robustness and compactness enable a more practical way for optical rotation detections, especially for applications in magnetoencephalography systems.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10775040 and 10775043)
文摘In this paper, the effect of finite Larmor radius (FLR) on high n ballooning modes is studied on the basis of FLR magnetohydrodynamic (FLR-MHD) theory. A linear FLR ballooning mode equation is derived in an 's^-- α' type equilibrium of circular-flux-surfaces, which is reduced to the ideal ballooning mode equation when the FLR effect is neglected. The present model reproduces some basic features of FLR effects on ballooning mode obtained previously by kinetic ballooning mode theories. That is, the FLR introduces a real frequency into ballooning mode and has a stabilising effect on ballooning modes (e.g., in the case of high magnetic shear s^- ≥ 0.8). In particular, some new properties of FLR effects on ballooning mode are discovered in the present research. Here it is found that in a high magnetic shear region (s^- ≥ 0.8) the critical pressure gradient (αc,FLR) of ballooning mode is larger than the ideal one (αc,IMHD) and becomes larger and larger with the increase of FLR parameter b0. However, in a low magnetic shear region, the FLR ballooning mode is more unstable than the ideal one, and the αc,FLR is much lower than the αc,IMHD. Moreover, the present results indicate that there exist some new weaker instabilities near the second stability boundary (obtained from ideal MHD theory), which means that the second stable region becomes narrow.
文摘During the last years some interesting experimental results have been reported for experiments in N2O, NO, NO dimer, H2, Toluene and BaFCH3 cluster. The main result consists in the observation of molecular beam depletion when the molecules of a pulsed beam interact with a static electric or magnetic field and an oscillating field (RF). In these cases, and as a main difference, instead of using four fields as in the original technique developed by I.I. Rabi and others, only two fields, those which configure the resonant unit, are used. That is, without using the nonhomogeneous magnetic fields. The depletion explanation for I.I. Rabi and others is based in the interaction between the molecular electric or magnetic dipole moment and the non-homogeneous fields. But, obviously, the change in the molecules trajectories observed on these new experiments has to be explained without considering the force provided by the field gradient because it happens without using non-homogeneous fields. In this paper a theoretical way for the explanation of these new experimental results is presented. One important point emerges as a result of this development, namely, the existence of an, until now unknown, spin-dependent force which would be responsible of the aforementioned deviation of the molecules.
基金support of the National Key R&D Program of China (Grant No. 2017YFB0503100)the National Natural Science Foundation of China (NSFC)(Grant No. 61227902).
文摘We propose an in-situ method to calibrate the coil constants of the optical atomic magnetomete. This method is based on measuring the Larmor precession of spin polarized alkali metal atoms and has been demonstrated on a K-Rb hybrid atomic magnetomete. Oscillation fields of different frequencies are swept on the transverse coil. By extracting the resonance frequency through phase-frequency analysis of electron spin projection, the coil constants are calibrated to be 323.1±0.28 nT/mA, 108±0.04nT/Ma, and 185.8±1.03 nT/mA along the X,Y, and Z directions, respectively.
基金supported by National Science Foundation and U.S.Department of Energy grants.
文摘A method for gyrokinetic simulation of low frequency(lower than the cyclotron frequency)magnetic compressional modes in general geometry is presented.The gyrokinetic-Maxwell system of equations is expressed fully in terms of the compressional component of the magnetic perturbation,δBk,with finite Larmor radius effects.This introduces a"gyro-surface"averaging ofδBk in the gyrocenter equations of motion,and similarly in the perpendicular Ampere’s law,which takes the form of the perpendicular force balance equation.The resulting system can be numerically implemented by representing the gyro-surface averaging by a discrete sum in the configuration space.For the typical wavelength of interest(on the order of the gyroradius),the gyro-surface averaging can be reduced to averaging along an effective gyro-orbit.The phase space integration in the force balance equation can be approximated by summing over carefully chosen samples in the magnetic moment coordinate,allowing for an efficient numerical implementation.