期刊文献+

Assembling Stabilization of the Rayleigh-Taylor Instability by the Effects of Finite Larmor Radius and Sheared Axial Flow 被引量:3

Assembling Stabilization of the Rayleigh-Taylor Instability by the Effects of Finite Larmor Radius and Sheared Axial Flow
下载PDF
导出
摘要 The assembling stabilizing effect of the finite Larmor radius (FLR) and the sheared axial flow (SAF) on the Rayleigh-Taylor instability in Z-pinch implosions is studied by means of the incompressible finite Larmor radius magnetohydrodynamic (MHD) equations. The finite Larmor radius effects are introduced in the momentum equation with the sheared axial flow through an anisotropic ion stress tensor. In this paper a linear mode equation is derived that is valid for arbitrary kL, where k is the wave number and L is the plasma shell thickness. Numerical solutions are presented. The results indicate that the short-wavelength modes of the Rayleigh-Taylor instability are easily stabilized by the individual effect of the finite Larmor radius or the sheared axial flow. The assembling effects of the finite Larmor radius and sheared axial flow can heavily mitigate the Rayleigh-Taylor instability, and the unstable region can be compressed considerably. The assembling stabilizing effect of the finite Larmor radius (FLR) and the sheared axial flow (SAF) on the Rayleigh-Taylor instability in Z-pinch implosions is studied by means of the incompressible finite Larmor radius magnetohydrodynamic (MHD) equations. The finite Larmor radius effects are introduced in the momentum equation with the sheared axial flow through an anisotropic ion stress tensor. In this paper a linear mode equation is derived that is valid for arbitrary kL, where k is the wave number and L is the plasma shell thickness. Numerical solutions are presented. The results indicate that the short-wavelength modes of the Rayleigh-Taylor instability are easily stabilized by the individual effect of the finite Larmor radius or the sheared axial flow. The assembling effects of the finite Larmor radius and sheared axial flow can heavily mitigate the Rayleigh-Taylor instability, and the unstable region can be compressed considerably.
出处 《Plasma Science and Technology》 SCIE EI CAS CSCD 2005年第3期2805-2809,共5页 等离子体科学和技术(英文版)
基金 The project supported by the National Natural Science Foundation of China (Nos. 10035020 and 40390150)
关键词 Z-PINCH IMPLOSION rayleigh-taylor instability finite larmor radius z-pinch, implosion, rayleigh-taylor instability, finite larmor radius
  • 相关文献

参考文献24

  • 1De Groot J S, Toor A, Golberg S M, et al. Phys.Plasmas, 1997, 4:737. 被引量:1
  • 2Haines M G. IEEE Trans. On Plasma Science, 1998,26:1275. 被引量:1
  • 3Cochran F L, Davis J, Velikovich A L. Phys. Plasmas,1995, 2:2765. 被引量:1
  • 4Matzen M Keith. Phys. Plasmas. 1997, 4:1519. 被引量:1
  • 5Sanford T W L, Allshouse G O, Marder B M, et al.Phys. Rev. Lett., 1996, 77:5063. 被引量:1
  • 6Wright R J, Pott D F R, Haines M G. Plasma Phys,1976, 18:1. 被引量:1
  • 7Arber T D, Howell D F. Phys. Plasmas, 1996, 3:554. 被引量:1
  • 8Shumlak U, Hartman C W. Phys. Rev. Lett., 1995,75:3285. 被引量:1
  • 9Shumlak U, Roderick N F. Phys. Plasmas, 1998, 5:2384. 被引量:1
  • 10Ruden E L. IEEE Trans. On Plasma Science, 2002,30:611. 被引量:1

同被引文献17

  • 1Tsai W Y, Liskow D, Wilcox T. Rayleigh-Taylor instabilities of an accelerating thin plasma slab [J].Phys. Fluids, 1981, 24(9): 1676-1681. 被引量:1
  • 2Hammer James H, Eddleman James L, Springer P T.Two-dimensional radiation-magnetohydrodynamic simulations of SATURN imploding Z pinches [J].Phys, Plasmas, 1996, 3(5): 2063. 被引量:1
  • 3Lee K T, Kim S H, Kim D, et al. Numerical study on the dynamics of Z-pinch carbon plasma [J]. Phys.Plasmas, 1996, 3(4): 1340. 被引量:1
  • 4Pereira N R, Davis J. X rays from Z-pinches on relativistic electron-beam generators [J]. J. Appl.Phys., 1988, 64(3):R1. 被引量:1
  • 5Hussey T W, Roderick N F, Shumlak U, et al. A heuristic model for the nonlinear Rayleigh-Taylor instability in fast Z pinches [J]. Phys. Plasmas, 1995,2(6): 2055. 被引量:1
  • 6Deeney C , Coverdale C A, Douglas M R, et al.Radiative properties of high wire number tungsten arrays with implosion times up to 250 ns [J]. Phys.Plasmas, 1999, 6(9): 3576. 被引量:1
  • 7Matzen M K. Z pinches as intense x-ray sources for high-energy density physics applications [J]. Phys.Plasmas, 1997, 4(5): 1519. 被引量:1
  • 8Groot J S De, Toor A, Golberg S M, et al. Growth of the Rayleigh-Taylor instability in an imploding Z-pinch [J]. Phys. Plasmas, 1997, 4(3): 737. 被引量:1
  • 9Haines M G. A heuristic model of the wire array Z-pinch [J]. IEEE Trans. Plasma Sci., 1998,26(4): 1275, 被引量:1
  • 10Sanford T W L, Allshouse G O, Marder B M, et. al.Improved symmetry greatly increases X-ray power from wire-array Z-pinches [J]. Phys. Rev, Lett., 1996,77(25): 5063. 被引量:1

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部