Seabed fluid escape is active in the Makran subduction zone,Arabian Sea.Based on the new highresolution 2D seismic data,acoustic blanking zones and seafloor mounds are identified.Acoustic blanking zones include three ...Seabed fluid escape is active in the Makran subduction zone,Arabian Sea.Based on the new highresolution 2D seismic data,acoustic blanking zones and seafloor mounds are identified.Acoustic blanking zones include three kinds of geometries:Bell-shaped,vertically columnar and tilted zones.The bellshaped blanking zone is characterized by weak and discontinuous reflections in the interior and upbending reflections on the top,interpreted as gas chimneys.Vertically columnar blanking zone is interpreted as side-imaged gas chimneys associated with focused fluid flow and topped by a seafloor anomaly expressed as a localized reflection discontinuity,which may together serve as a vent structure.Tilted acoustic blanking zone could be induced by accretionary thrust activity and rapid sedimentation surrounding slope.Seafloor mounds occur at the sites of bell-shaped acoustic blanking zone and may be associated with the material intrusion.Bottom simulating refectors(BSRs)are widely distributed and exhibit a series of characteristics including diminished amplitude,low continuity as well as local shoaling overlapping with these acoustic blanking zones.The large amount of gases dissociated from the gas hydrates migrated upwards and then arrived at the near-seafloor sediments,followed by the formation of the gas hydrates and hence the seafloor mound.展开更多
To confirm the seabed fluid flow at the Haima cold seeps,an integrated study of multi-beam and seismic data reveals the morphology and fate of four bubble plumes and investigates the detailed subsurface structure of t...To confirm the seabed fluid flow at the Haima cold seeps,an integrated study of multi-beam and seismic data reveals the morphology and fate of four bubble plumes and investigates the detailed subsurface structure of the active seepage area.The shapes of bubble plumes are not constant and influenced by the northeastward bottom currents,but the water depth where these bubble plumes disappear(630–650 m below the sea level)(mbsl)is very close to the upper limit of the gas hydrate stability zone in the water column(620 m below the sea level),as calculated from the CTD data within the study area,supporting the“hydrate skin”hypothesis.Gas chimneys directly below the bottom simulating reflectors,found at most sites,are speculated as essential pathways for both thermogenic gas and biogenic gas migrating from deep formations to the gas hydrate stability zone.The fracture network on the top of the basement uplift may be heavily gas-charged,which accounts for the chimney with several kilometers in diameter(beneath Plumes B and C).The much smaller gas chimney(beneath Plume D)may stem from gas saturated localized strong permeability zone.High-resolution seismic profiles reveal pipe-like structures,characterized by stacked localized amplitude anomalies,just beneath all the plumes,which act as the fluid conduits conveying gas from the gas hydrate-bearing sediments to the seafloor,feeding the gas plumes.The differences between these pipe-like structures indicate the dynamic process of gas seepage,which may be controlled by the build-up and dissipation of pore pressure.The 3D seismic data show high saturated gas hydrates with high RMS amplitude tend to cluster on the periphery of the gas chimney.Understanding the fluid migration and hydrate accumulation pattern of the Haima cold seeps can aid in the further exploration and study on the dynamic gas hydrate system in the South China Sea.展开更多
Gas hydrates have been found in the western continental margin of South China Sea,which are revealed by widespread bottom simulating reflectors(BSRs)imaged from a three-dimensional(3D)seismic volume near the Guangle c...Gas hydrates have been found in the western continental margin of South China Sea,which are revealed by widespread bottom simulating reflectors(BSRs)imaged from a three-dimensional(3D)seismic volume near the Guangle carbonate platform in the western South China Sea.Fluid-escape structures(faults and gas chimneys)are originated below BSR were distinguished.A comprehensive model in three-level structure was proposed to depict the gas hydrate accumulation in the study area.In Level 1,regional major faults and gas chimneys provide the first pathways of upward migration of gas near basement.In Level 2,pervasive polygonal faults in carbonate layer promote the migration of gas.In Level 3,gases sourced from near-basement accumulate within shallow sediment layers and form gas hydrate above the unit with faults once appropriate temperature and pressure occur.The gas hydrates in the study area are mainly in microbial origin,and their accumulation occurs only when fluid-escape structures align in all the three levels.The proposed model of the gas hydrate accumulation in western SCS margin provides new insights for further studies in this poorly studied area.展开更多
Effect of kinetic model parameters on fission product (I-129) activity from fuel to coolant in PWRs has been studied in this work. First a computational model was developed for fission product release into primary coo...Effect of kinetic model parameters on fission product (I-129) activity from fuel to coolant in PWRs has been studied in this work. First a computational model was developed for fission product release into primary coolant using ORIGEN-2 as subroutine. The model is based on set of differential equations of kinetic model which includes fuel-to-gap release model, gap-to-coolant leakage model, and Booths diffusion model. A Matlab based computer program FPAPC (Fission Product Activity in Primary Coolant) was developed. Variations of I-129 activity in Primary Heat Transport System were computed and computed values of i-129 were found in good agreement and deviations were within 2% - 3% of already published data values. Finally, the effects of coolant purification rate, diffusion constant and gas escape rate on I-129 activity were studied and results indicated that the coolant purification rate is the most sensitive parameter for fission product activity in primary circuit. For changes of 5% in steps from −10% to +10% in the coolant purification rate constant (Β), the activity variation after 200 days of reactor operation was 23.1% for the change.展开更多
基金This work was financially supported by the Laboratory for Marine Mineral Resources,Qingdao National Laboratory for Marine Science and Technology(MMRKF201810)the National Natural Science Foundation of China(41606077)This work was also financially supported by the China Geological Survey(DD20190582,DD20191009,DD20160214).
文摘Seabed fluid escape is active in the Makran subduction zone,Arabian Sea.Based on the new highresolution 2D seismic data,acoustic blanking zones and seafloor mounds are identified.Acoustic blanking zones include three kinds of geometries:Bell-shaped,vertically columnar and tilted zones.The bellshaped blanking zone is characterized by weak and discontinuous reflections in the interior and upbending reflections on the top,interpreted as gas chimneys.Vertically columnar blanking zone is interpreted as side-imaged gas chimneys associated with focused fluid flow and topped by a seafloor anomaly expressed as a localized reflection discontinuity,which may together serve as a vent structure.Tilted acoustic blanking zone could be induced by accretionary thrust activity and rapid sedimentation surrounding slope.Seafloor mounds occur at the sites of bell-shaped acoustic blanking zone and may be associated with the material intrusion.Bottom simulating refectors(BSRs)are widely distributed and exhibit a series of characteristics including diminished amplitude,low continuity as well as local shoaling overlapping with these acoustic blanking zones.The large amount of gases dissociated from the gas hydrates migrated upwards and then arrived at the near-seafloor sediments,followed by the formation of the gas hydrates and hence the seafloor mound.
基金The Shandong Province “Taishan Scholar” Construction Projectthe fund of the Laboratory for Marine Mineral Resources,Pilot National Laboratory for Marine Science and Technology (Qingdao) under contract No.MMRKF201810+1 种基金the National Natural Science Foundation of China under contract No.41606077the National Key R&D Program of China under contract No.2018YFC0310000.
文摘To confirm the seabed fluid flow at the Haima cold seeps,an integrated study of multi-beam and seismic data reveals the morphology and fate of four bubble plumes and investigates the detailed subsurface structure of the active seepage area.The shapes of bubble plumes are not constant and influenced by the northeastward bottom currents,but the water depth where these bubble plumes disappear(630–650 m below the sea level)(mbsl)is very close to the upper limit of the gas hydrate stability zone in the water column(620 m below the sea level),as calculated from the CTD data within the study area,supporting the“hydrate skin”hypothesis.Gas chimneys directly below the bottom simulating reflectors,found at most sites,are speculated as essential pathways for both thermogenic gas and biogenic gas migrating from deep formations to the gas hydrate stability zone.The fracture network on the top of the basement uplift may be heavily gas-charged,which accounts for the chimney with several kilometers in diameter(beneath Plumes B and C).The much smaller gas chimney(beneath Plume D)may stem from gas saturated localized strong permeability zone.High-resolution seismic profiles reveal pipe-like structures,characterized by stacked localized amplitude anomalies,just beneath all the plumes,which act as the fluid conduits conveying gas from the gas hydrate-bearing sediments to the seafloor,feeding the gas plumes.The differences between these pipe-like structures indicate the dynamic process of gas seepage,which may be controlled by the build-up and dissipation of pore pressure.The 3D seismic data show high saturated gas hydrates with high RMS amplitude tend to cluster on the periphery of the gas chimney.Understanding the fluid migration and hydrate accumulation pattern of the Haima cold seeps can aid in the further exploration and study on the dynamic gas hydrate system in the South China Sea.
基金Supported by the China Academy of Petroleum Exploration and Development(Nos.2019B-4909,2021DJ2401)Dr.Wei LI is specially funded by the CAS Pioneer Hundred Talents Program(No.Y8SL011001)。
文摘Gas hydrates have been found in the western continental margin of South China Sea,which are revealed by widespread bottom simulating reflectors(BSRs)imaged from a three-dimensional(3D)seismic volume near the Guangle carbonate platform in the western South China Sea.Fluid-escape structures(faults and gas chimneys)are originated below BSR were distinguished.A comprehensive model in three-level structure was proposed to depict the gas hydrate accumulation in the study area.In Level 1,regional major faults and gas chimneys provide the first pathways of upward migration of gas near basement.In Level 2,pervasive polygonal faults in carbonate layer promote the migration of gas.In Level 3,gases sourced from near-basement accumulate within shallow sediment layers and form gas hydrate above the unit with faults once appropriate temperature and pressure occur.The gas hydrates in the study area are mainly in microbial origin,and their accumulation occurs only when fluid-escape structures align in all the three levels.The proposed model of the gas hydrate accumulation in western SCS margin provides new insights for further studies in this poorly studied area.
文摘Effect of kinetic model parameters on fission product (I-129) activity from fuel to coolant in PWRs has been studied in this work. First a computational model was developed for fission product release into primary coolant using ORIGEN-2 as subroutine. The model is based on set of differential equations of kinetic model which includes fuel-to-gap release model, gap-to-coolant leakage model, and Booths diffusion model. A Matlab based computer program FPAPC (Fission Product Activity in Primary Coolant) was developed. Variations of I-129 activity in Primary Heat Transport System were computed and computed values of i-129 were found in good agreement and deviations were within 2% - 3% of already published data values. Finally, the effects of coolant purification rate, diffusion constant and gas escape rate on I-129 activity were studied and results indicated that the coolant purification rate is the most sensitive parameter for fission product activity in primary circuit. For changes of 5% in steps from −10% to +10% in the coolant purification rate constant (Β), the activity variation after 200 days of reactor operation was 23.1% for the change.