Utilizing the spatiotemporal features contained in extensive trajectory data for identifying operation modes of agricultural machinery is an important basis task for subsequent agricultural machinery trajectory resear...Utilizing the spatiotemporal features contained in extensive trajectory data for identifying operation modes of agricultural machinery is an important basis task for subsequent agricultural machinery trajectory research.In the present study,to effectively identify agricultural machinery operation mode,a feature deformation network with multi-range feature enhancement was proposed.First,a multi-range feature enhancement module was developed to fully explore the feature distribution of agricultural machinery trajectory data.Second,to further enrich the representation of trajectories,a feature deformation module was proposed that can map trajectory points to high-dimensional space to form feature maps.Then,EfficientNet-B0 was used to extract features of different scales and depths from the feature map,select features highly relevant to the results,and finally accurately predict the mode of each trajectory point.To validate the effectiveness of the proposed method,experiments were conducted to compare the results with those of other methods on a dataset of real agricultural trajectories.On the corn and wheat harvester trajectory datasets,the model achieved accuracies of 96.88%and 96.68%,as well as F1 scores of 93.54%and 94.19%,exhibiting improvements of 8.35%and 9.08%in accuracy and 20.99%and 20.04%in F1 score compared with the current state-of-the-art method.展开更多
Enhancement-mode(E-mode)GaN-on-Si radio-frequency(RF)high-electron-mobility transistors(HEMTs)were fabri-cated on an ultrathin-barrier(UTB)AlGaN(<6 nm)/GaN heterostructure featuring a naturally depleted 2-D electro...Enhancement-mode(E-mode)GaN-on-Si radio-frequency(RF)high-electron-mobility transistors(HEMTs)were fabri-cated on an ultrathin-barrier(UTB)AlGaN(<6 nm)/GaN heterostructure featuring a naturally depleted 2-D electron gas(2DEG)channel.The fabricated E-mode HEMTs exhibit a relatively high threshold voltage(VTH)of+1.1 V with good uniformity.A maxi-mum current/power gain cut-off frequency(fT/fMAX)of 31.3/99.6 GHz with a power added efficiency(PAE)of 52.47%and an out-put power density(Pout)of 1.0 W/mm at 3.5 GHz were achieved on the fabricated E-mode HEMTs with 1-μm gate and Au-free ohmic contact.展开更多
A high-performance enhancement-mode (E-mode) gallium nitride (GaN)-based metal-insulator- semiconductor high electron mobility transistor (MIS-HEMT) that employs a 5-nm-thick aluminum gallium nitride (Al0.3Ga0...A high-performance enhancement-mode (E-mode) gallium nitride (GaN)-based metal-insulator- semiconductor high electron mobility transistor (MIS-HEMT) that employs a 5-nm-thick aluminum gallium nitride (Al0.3Ga0.7N) as a barrier layer and relies on silicon nitride (SIN) passivation to control the 2DEG density is presented. Unlike the SiN passivation, aluminum oxide (AL2O3) by atomic layer deposition (ALD) on A1GaN surface would not increase the 2DEG density in the heterointerface. ALD AL2O3 was used as gate insulator after the depletion by etching of the SiN in the gate region. The E-mode MIS-HEMT with gate length (LG) of 1 μm showed a maximum drain current density (IDs) of 657 mA/mm, a maximum extrinsic transconductance (gin) of 187 mS/ram and a threshold voltage (Vth) of 1 V. Comparing with the corresponding E-mode HEMT, the device performances had been greatly improved due to the insertion of AL2O3 gate insulator. This provided an excellent way to realize E-mode A1GaN/GaN MIS-HEMTs with both high Vth and IDS.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.32301691)the National Key R&D Program of China and Shandong Province,China(Grant No.2021YFB3901300)the National Precision Agriculture Application Project(Grant/Contract number:JZNYYY001).
文摘Utilizing the spatiotemporal features contained in extensive trajectory data for identifying operation modes of agricultural machinery is an important basis task for subsequent agricultural machinery trajectory research.In the present study,to effectively identify agricultural machinery operation mode,a feature deformation network with multi-range feature enhancement was proposed.First,a multi-range feature enhancement module was developed to fully explore the feature distribution of agricultural machinery trajectory data.Second,to further enrich the representation of trajectories,a feature deformation module was proposed that can map trajectory points to high-dimensional space to form feature maps.Then,EfficientNet-B0 was used to extract features of different scales and depths from the feature map,select features highly relevant to the results,and finally accurately predict the mode of each trajectory point.To validate the effectiveness of the proposed method,experiments were conducted to compare the results with those of other methods on a dataset of real agricultural trajectories.On the corn and wheat harvester trajectory datasets,the model achieved accuracies of 96.88%and 96.68%,as well as F1 scores of 93.54%and 94.19%,exhibiting improvements of 8.35%and 9.08%in accuracy and 20.99%and 20.04%in F1 score compared with the current state-of-the-art method.
基金supported in part by the National Key Research and Development Program of China under Grant 2022YFB3604400in part by the Youth Innovation Promotion Association of Chinese Academy Sciences(CAS)+4 种基金in part by CAS-Croucher Funding Scheme under Grant CAS22801in part by National Natural Science Foundation of China under Grant 62074161,Grant 62004213,and Grant U20A20208in part by the Beijing Municipal Science and Technology Commission project under Grant Z201100008420009 and Grant Z211100007921018in part by the University of CASin part by IMECAS-HKUST-Joint Laboratory of Microelectronics.
文摘Enhancement-mode(E-mode)GaN-on-Si radio-frequency(RF)high-electron-mobility transistors(HEMTs)were fabri-cated on an ultrathin-barrier(UTB)AlGaN(<6 nm)/GaN heterostructure featuring a naturally depleted 2-D electron gas(2DEG)channel.The fabricated E-mode HEMTs exhibit a relatively high threshold voltage(VTH)of+1.1 V with good uniformity.A maxi-mum current/power gain cut-off frequency(fT/fMAX)of 31.3/99.6 GHz with a power added efficiency(PAE)of 52.47%and an out-put power density(Pout)of 1.0 W/mm at 3.5 GHz were achieved on the fabricated E-mode HEMTs with 1-μm gate and Au-free ohmic contact.
基金Project supported by the National Natural Science Foundation of China(Nos.61474101,61106130)the Natural Science Foundation of Jiangsu Province of China(No.BK20131072)
文摘A high-performance enhancement-mode (E-mode) gallium nitride (GaN)-based metal-insulator- semiconductor high electron mobility transistor (MIS-HEMT) that employs a 5-nm-thick aluminum gallium nitride (Al0.3Ga0.7N) as a barrier layer and relies on silicon nitride (SIN) passivation to control the 2DEG density is presented. Unlike the SiN passivation, aluminum oxide (AL2O3) by atomic layer deposition (ALD) on A1GaN surface would not increase the 2DEG density in the heterointerface. ALD AL2O3 was used as gate insulator after the depletion by etching of the SiN in the gate region. The E-mode MIS-HEMT with gate length (LG) of 1 μm showed a maximum drain current density (IDs) of 657 mA/mm, a maximum extrinsic transconductance (gin) of 187 mS/ram and a threshold voltage (Vth) of 1 V. Comparing with the corresponding E-mode HEMT, the device performances had been greatly improved due to the insertion of AL2O3 gate insulator. This provided an excellent way to realize E-mode A1GaN/GaN MIS-HEMTs with both high Vth and IDS.