相图计算(Calculation of Phase Diagram,CALPHAD)是冶金、化工、材料设计等各个领域的重要研究工具,随着传统材料体系的研究深入和新材料体系的不断被发现,相关的相图和热力学实验数据愈显匮乏.基于电子层面的第一性原理计算(First-pri...相图计算(Calculation of Phase Diagram,CALPHAD)是冶金、化工、材料设计等各个领域的重要研究工具,随着传统材料体系的研究深入和新材料体系的不断被发现,相关的相图和热力学实验数据愈显匮乏.基于电子层面的第一性原理计算(First-principles Calculations),可以从体系基态性质出发,研究亚稳相、金属间化合物的结构、合金的稳定性,促进CALPHAD的发展.文中关注了近年来第一性原理计算在CALPHAD技术当中的应用研究进展,从计算化合物的能量性质,相图,动力学性质等方面进行系统阐述.展开更多
This paper reports a new three-dimensional autonomous chaotic system. It contains six control parameters and three nonlinear terms. Two cross-product terms are respectively in two equations. And one square term is in ...This paper reports a new three-dimensional autonomous chaotic system. It contains six control parameters and three nonlinear terms. Two cross-product terms are respectively in two equations. And one square term is in the third equation. Basic dynamic properties of the new system are investigated by means of theoretical analysis, numerical simulation, sensitivity to initial, power spectrum, Lyapunov exponent, and Poincar~ diagrams. The dynamic properties affected by variable parameters are also analysed. Finally, the chaotic system is simulated by circuit. The results verify the existence and implementation of the system.展开更多
文摘相图计算(Calculation of Phase Diagram,CALPHAD)是冶金、化工、材料设计等各个领域的重要研究工具,随着传统材料体系的研究深入和新材料体系的不断被发现,相关的相图和热力学实验数据愈显匮乏.基于电子层面的第一性原理计算(First-principles Calculations),可以从体系基态性质出发,研究亚稳相、金属间化合物的结构、合金的稳定性,促进CALPHAD的发展.文中关注了近年来第一性原理计算在CALPHAD技术当中的应用研究进展,从计算化合物的能量性质,相图,动力学性质等方面进行系统阐述.
文摘This paper reports a new three-dimensional autonomous chaotic system. It contains six control parameters and three nonlinear terms. Two cross-product terms are respectively in two equations. And one square term is in the third equation. Basic dynamic properties of the new system are investigated by means of theoretical analysis, numerical simulation, sensitivity to initial, power spectrum, Lyapunov exponent, and Poincar~ diagrams. The dynamic properties affected by variable parameters are also analysed. Finally, the chaotic system is simulated by circuit. The results verify the existence and implementation of the system.