期刊文献+

线性Caputo型分数阶三维动力系统解的空间结构及动力学行为

Structure of Space and Dynamic Behavior of Solutions to The Linear Caputo-Fractional 3-Dimension Autonomous Systems
下载PDF
导出
摘要 基于系数矩阵特征值的分类情况,采取一系列线性变换和Laplace变换,结合Mittag-Leffler函数的敛散性,对Caputo型分数阶三维动力系统进行了研究,得到了分数阶三维动力系统解的相空间结构及动力学性质。 Based on the classification of coefficient matrix eigenvalues,a series of linear transformations and Laplace transformations are adopted to study the Caputo-type fractional-order three-dimensional dynamical system,combining with the convergence and divergence of the Mittag-Leffler function.The phase space structure and dynamical properties of the solution to the fractional-order three-dimensional dynamical system are obtained.
作者 张宏杰 ZHANG Hongjie(College of Basic Education,Chongqing Industry&Trade Polytechnic,Chongqing 408000,China)
出处 《滨州学院学报》 2024年第2期63-68,共6页 Journal of Binzhou University
基金 重庆市自然科学基金项目(cstc2018jcyjAX0766) 重庆工贸职业技术学院校级科研项目(ZR202314)。
关键词 特征值 Mittag-Leffler函数 分数阶动力系统 相空间结构 动力学性质 eigenvalues Mittag-Leffler function fractional order dynamical systems phase space structure dynamical properties
  • 相关文献

参考文献10

二级参考文献54

  • 1Oldham K B, Spanier J. The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order[ M]. New York: Academic Press, 1974. 被引量:1
  • 2Miller K S, Ross B. An Introduction to the Fractional Calculus and Fractional Differential E- quatious[ M]. New York: 3ohn Wiley & Sons Inc, 1993. 被引量:1
  • 3Podlubny I. Fractional Differential Equations [ M ]. New York: Academic Press, 1999. 被引量:1
  • 4Samko S G, Kilbas A A, Marichev O I. Fractional Integrals and Derivatives [ M J. New York: Gordon and Breach Science Publishers, 1993. 被引量:1
  • 5Mandelbrot B B. The Fracta/Geometry of Nature[M]. New York: W H Freeman, 1982. 被引量:1
  • 6Bagley R L, Torvik P J. A theoretical basis for the application of fractional calculus to vis- coelasticity[J]. Journal of Rheology, 1983, 27(3) : 201-210. 被引量:1
  • 7Bagley R L, Torvik P J. Fractional calculus--a different approach to the analysis of viscoelas- tically damped structures[J]. A/AA Journal, 1983, 21(5) : 741-748. 被引量:1
  • 8Bagley R L, Torvik P J. Fractional calculus in the transient analysis of viscoelastically damped structures[J]. A/AA Journal, 1985, 23(6): 918-925. 被引量:1
  • 9Koeller R C. Applications of fractional calculus to the theory of viscoelasticity[ J]. Journal of Applied Mechanics-Transactions of the ASME, 1984, 51(2) : 299-307. 被引量:1
  • 10Koeller R C, Wisconsin P. Polynomial operators, stieltjes convolution and fractional calculus in hereditary mechanics[ J]. Acta Mechanica, 1986, 58(3/4) : 251-264. 被引量:1

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部