Ni-rich layered cathodes have become the promising candidates for the next-generation high-energy Liion batteries due to their high energy density and competitive cost.However,they suffer from rapidcapacity fading due...Ni-rich layered cathodes have become the promising candidates for the next-generation high-energy Liion batteries due to their high energy density and competitive cost.However,they suffer from rapidcapacity fading due to the structural and interfacial instability upon long-term operation.Herein,the Tidoped and LiYO2-coated Ni-rich layered cathode has been synthesized via a facile one-step sinteringstrategy,which significantly restrains the interfacial parasitic side reactions and enhances the structuralstability.Specifically,the trace Ti^(4+)doping greatly stabilizes the lattice oxygen and alleviates the Li/Nidisorder while the LiYO_(2) coating layer can prevent the erosion of the cathode by the electrolyte duringcycles.As a result,the Ti-NCM83@LYO delivers a high specific capacity of 135 mAh g^(-1) even at 10C andthere is almost no capacity loss at 1C for 100 cycles.This work provides a simple one-step dual-modification strategy to meet the commercial requirements of Ni-rich cathodes.展开更多
Layered transition metal dichalcogenides are promising candidates for sodium storage but suffering from low intrinsic electronic conductivity and limited interlayer spacing for fast electron/ion transport,which restri...Layered transition metal dichalcogenides are promising candidates for sodium storage but suffering from low intrinsic electronic conductivity and limited interlayer spacing for fast electron/ion transport,which restricts their high-rate capability and cycling stability.In this work,rGO@MoSe_(2)/NAC hierarchical architectures,consisting of conductive reduced graphene oxide(rGO)supported by hollow nanospheres that are rolled from superlattices of alternatively overlapped MoSe_(2)and N-doped amorphous carbon(NAC)monolayers,are synthesized as a highperformance sodium storage anode.Theoretical calculations reveal the intercalation of NAC monolayer between two adjacent MoSe_(2)monolayers improving electronic conductivity of MoSe_(2)in both surface and internal bulk to fully accelerate electron transport and enhance Naþadsorption.The interoverlapped MoSe_(2)/NAC superlattice featuring a wide interlayer expansion(72.3%)of MoSe_(2)dramatically decreases Naþdiffusion barriers for fast insertion/extraction.Moreover,the hollow nanospheres and the rGO conductive network contribute to a robust hiberarchy that can well release internal stress and buffer the volume expansion,thereby enabling outstanding structural stability.Consequently,the rGO@MoSe_(2)/NAC anode exhibits excellent high-rate capability of 194 mAh g^(-1)and ultralong cyclability of 12000 cycles with a low capacity fading rate of 0.0038%per cycle at an ultra-high current of 50 A g^(-)1,delivering the best high-rate cycling performance to date.Remarkably,the Na_(3)V_(2)(PO_(4))_(3)||rGO@MoSe_(2)/NAC full cells also present outstanding cycling stability(600 cycles)at 10C rate,which proves the great potential in fast-charging applications.展开更多
Nickel-rich cathode is considered to be the cathode material that can solve the short-range problem of electric vehicles with excellent elec-trochemical properties and low price.However,microcracks,lithium–nickel hyb...Nickel-rich cathode is considered to be the cathode material that can solve the short-range problem of electric vehicles with excellent elec-trochemical properties and low price.However,microcracks,lithium–nickel hybridization,and irreversible phase transitions during cycling limit their commercial applications.These issues should be resolved by modifications.In recent years,it has been favored by researchers to solve a large number of problems by combining multiple modification strate-gies.Therefore,this paper reviews recent developments in various modification techniques for nickel-rich cathode materials that have improved their electrochemical characteristics.The summary of multiple modifications of nickel-rich materials will play a guiding role in future development.展开更多
Dual-atom catalysts(DACs) afford promising potential for oxygen reduction electrocatalysis due to their high atomic efficiency and high intrinsic activity.However,precise construction of dual-atom sites remains a chal...Dual-atom catalysts(DACs) afford promising potential for oxygen reduction electrocatalysis due to their high atomic efficiency and high intrinsic activity.However,precise construction of dual-atom sites remains a challenge.In this work,a post-modification strategy is proposed to precisely fabricate DACs for oxygen reduction electrocatalysis.Concretely,a secondary metal precursor is introduced to the primary single-atom sites to introduce direct metal-metal interaction,which ensures the formation of desired atom pair structure during the subsequent pyrolysis process and allows for successful construction of DACs.The as-prepared FeCo-NC DAC exhibits superior oxygen reduction electrocatalytic activity with a half-wave potential of 0,91 V vs.reversible hydrogen electrode.Zn-air batteries equipped with the FeCo-NC DAC demonstrate higher peak power density than those with the Pt/C benchmark.More importantly,this post-modification strategy is demonstrated universal to achieve a variety of dual-atom sites.This work presents an effective synthesis methodology for precise construction of catalytic materials and propels their applications in energy-related devices.展开更多
Introducing high-valence Ta element is an essential strategy for addressing the structu ral deterioration of the Ni-rich LiNi_(1-x-y)Co_(x)Mn_(y)O_(2)(NCM)cathode,but the enlarged Li/Ni cation mixing leads to the infe...Introducing high-valence Ta element is an essential strategy for addressing the structu ral deterioration of the Ni-rich LiNi_(1-x-y)Co_(x)Mn_(y)O_(2)(NCM)cathode,but the enlarged Li/Ni cation mixing leads to the inferior rate capability originating from the hindered Li~+migration.Note that the non-magnetic Ti~(4+)ion can suppress Li/Ni disorder by removing the magnetic frustration in the transition metal layer.However,it is still challenging to directionally design expected Ta/Ti dual-modification,resulting from the complexity of the elemental distribution and the uncertainty of in-situ formed coating compounds by introducing foreign elements.Herein,a LiTaO_3 grain boundary(GB)coating and bulk Ti-doping have been successfully achieved in LiNi_(0.834)Co_(0.11)Mn_(0.056)O_(2) cathode by thermodynamic guidance,in which the structural formation energy and interfacial binding energy are employed to predict the elemental diffusion discrepancy and thermodynamically stable coating compounds.Thanks to the coupling effect of strengthened structural/interfacial stability and improved Li~+diffusion kinetics by simultaneous bulk/GB engineering,the Ta/Ti-NCM cathode exhibits outstanding capacity retention,reaching 91.1%after 400 cycles at 1 C.This elaborate work contributes valuable insights into rational dual-modification engineering from a thermodynamic perspective for maximizing the electrochemical performances of NCM cathodes.展开更多
Al metal possesses ultrahigh theoretical volumetric capacity of 8,040 m Ah cm^(-3),and gravimetric capacity of 2,980 m Ah g^(-1),and thus is highly attractive for electrochemical energy storage.However,it suffers from...Al metal possesses ultrahigh theoretical volumetric capacity of 8,040 m Ah cm^(-3),and gravimetric capacity of 2,980 m Ah g^(-1),and thus is highly attractive for electrochemical energy storage.However,it suffers from several issues,such as the dendrite formation,during Al stripping-deposition cycling,which has been verified to account for the short circuit and limited cyclic performance.Herein,we use a facile and applicable method to in-situ reconstruct the Al anode surface with F-Al-O chemical bonds,which could preferentially induce the planar growth of Al along the interface plane,thus leading to the dendrite-free morphology evolution during the cycling.Benefiting from F-Al-O chemical bonds on the surface of Al anodes,long lifespan of symmetric cells can be realized even under 1 m A cm^(-2)and 1 m Ah cm^(-2).Coupling the F-Al anode with graphite-based cathodes,high-voltage dual-ion Al metal batteries can be achieved with long-term cycle stability up to 1,200 cycles(at 0.5 m A cm^(-2)),surpassing the counterparts using pristine Al metal anode.Furthermore,the effectiveness of this surficial modification strategy is also elucidated with the aid of theoretical calculation.This work provides novel insights on low-cost and facile strategies against the Al dendrite growth in aluminum batteries.展开更多
C-C bond activation has emerged as a powerful tool for the construction of complex molecules.Herein,we report a dual ligands relay-promoted transformation of unstrained aryl,alkenyl and alkynyl ketones to the correspo...C-C bond activation has emerged as a powerful tool for the construction of complex molecules.Herein,we report a dual ligands relay-promoted transformation of unstrained aryl,alkenyl and alkynyl ketones to the corresponding polyfluoroarenes and nitriles via C-C(=O)bond cleavage and subsequent decarboxylative arylation process.Various polyfluoroarene and nitrile products are obtained in one pot under cyanide-free conditions.The protocol features high atom economy,broad functional group tolerance and excellent heterocyclic compatibility.The late-stage functionalization of the drug and natural product demonstrated the synthetic utility of our protocol.Furthermore,the decisive role of the dual ligands was clarified and the mechanistic rationale including theβ-C elimination as the rate-limiting step was supported by detailed density functional theory(DFT)studies.展开更多
Lysine lipoylation plays vital roles in cell metabolism and redox processes.For example,removal of lipoylation will decrease pyruvate dehydrogenase activity and affect the citric acid cycle.Despite the important funct...Lysine lipoylation plays vital roles in cell metabolism and redox processes.For example,removal of lipoylation will decrease pyruvate dehydrogenase activity and affect the citric acid cycle.Despite the important functions of lysine lipoylation,the mechanisms for the addition and removal of this modification remain largely unexplored.Very few useful chemical tools are available to study the interactions of lysine lipoylation with its regulatory delipoylation proteins.For example,immunoaffinity purification-mass spectrometry is one of such tools,which highly relies on antibody efficiency and purification techniques.Single-step activity based fluorogenic probes developed by our groups and others is also an efficient method to study the deacylation activity.Affinitybased labeling probe using photo-cross-linker is a powerful platform to study the transient and dynamic interactions of peptide ligands with the interacting proteins.Herein,we have designed and synthesized a dual-function probe KTLlip for studying enzymatic delipoylation(eraser)activity and interaction of lysine lipoylation with the eraser at the same time.We show that KTLlip can be used as a useful tool to detect delipoylation as demonstrated by its ability to fluorescently label the eraser activity of recombinant Sirt2.We envision that the probe will help delineate the roles of delipoylation enzyme in biology.展开更多
An existing small-scale single-powered baking oven was modified and optimize into a dual-powered oven. The oven was redesigned to accommodate the initially designed firewood heat source and the newly introduced gas he...An existing small-scale single-powered baking oven was modified and optimize into a dual-powered oven. The oven was redesigned to accommodate the initially designed firewood heat source and the newly introduced gas heat source. Four heat exchangers (thermal pipes) were introduced to the baking chamber for effective heat and mass transfer during baking of bread dough. The thermal pipes were made of 2 mm thick hollow galvanized steel pipe of 23 mm diameter and 660 mm length. The performance of the oven was evaluated using the standard performance index, which includes baking capacity, baking efficiency and weight loss of the baked bread. The baked bread’s physical properties were determined and analyzed using Duncan multiple range ANOVA test at significant level of <em>p</em> < 0.05. These properties were optimized to determine the generate regression models using 3D model plot. The baking capacity, baking efficiency, weight loss and optimum baking temperature were: 101.9 kg/h, 46.44% (wood-fired);70.34% (gas-fired), 13.5 g (wood-fired);and 25.5 g (gas-fired), 150<span style="white-space:nowrap;">˚</span>C, respectively. The physical properties of baked bread, wood-fired were found to correspond with that of gas-fired oven. The modified oven can be used for the baking of dough at domestic, small and medium scale bakery.展开更多
基金This work was supported by the National Natural ScienceFoundation of China(grant No.21975074)the Innovation Programof Shanghai Municipal Education Commission,and the Fundamental Research Funds for the Central Universities.
文摘Ni-rich layered cathodes have become the promising candidates for the next-generation high-energy Liion batteries due to their high energy density and competitive cost.However,they suffer from rapidcapacity fading due to the structural and interfacial instability upon long-term operation.Herein,the Tidoped and LiYO2-coated Ni-rich layered cathode has been synthesized via a facile one-step sinteringstrategy,which significantly restrains the interfacial parasitic side reactions and enhances the structuralstability.Specifically,the trace Ti^(4+)doping greatly stabilizes the lattice oxygen and alleviates the Li/Nidisorder while the LiYO_(2) coating layer can prevent the erosion of the cathode by the electrolyte duringcycles.As a result,the Ti-NCM83@LYO delivers a high specific capacity of 135 mAh g^(-1) even at 10C andthere is almost no capacity loss at 1C for 100 cycles.This work provides a simple one-step dual-modification strategy to meet the commercial requirements of Ni-rich cathodes.
基金This work was financially supported by the National Natural Science Foundation of China(Grant Nos.51972092 and 52271208)。
文摘Layered transition metal dichalcogenides are promising candidates for sodium storage but suffering from low intrinsic electronic conductivity and limited interlayer spacing for fast electron/ion transport,which restricts their high-rate capability and cycling stability.In this work,rGO@MoSe_(2)/NAC hierarchical architectures,consisting of conductive reduced graphene oxide(rGO)supported by hollow nanospheres that are rolled from superlattices of alternatively overlapped MoSe_(2)and N-doped amorphous carbon(NAC)monolayers,are synthesized as a highperformance sodium storage anode.Theoretical calculations reveal the intercalation of NAC monolayer between two adjacent MoSe_(2)monolayers improving electronic conductivity of MoSe_(2)in both surface and internal bulk to fully accelerate electron transport and enhance Naþadsorption.The interoverlapped MoSe_(2)/NAC superlattice featuring a wide interlayer expansion(72.3%)of MoSe_(2)dramatically decreases Naþdiffusion barriers for fast insertion/extraction.Moreover,the hollow nanospheres and the rGO conductive network contribute to a robust hiberarchy that can well release internal stress and buffer the volume expansion,thereby enabling outstanding structural stability.Consequently,the rGO@MoSe_(2)/NAC anode exhibits excellent high-rate capability of 194 mAh g^(-1)and ultralong cyclability of 12000 cycles with a low capacity fading rate of 0.0038%per cycle at an ultra-high current of 50 A g^(-)1,delivering the best high-rate cycling performance to date.Remarkably,the Na_(3)V_(2)(PO_(4))_(3)||rGO@MoSe_(2)/NAC full cells also present outstanding cycling stability(600 cycles)at 10C rate,which proves the great potential in fast-charging applications.
基金supported by the project from the National Natural Science Foundation of China (20A20145)the Sichuan Science and Technology Program (No.2022ZHCG0121,No.21ZHSF0111)the start-up funding of the Chemistry and Chemical Engineering Guangdong Laboratory (No.2122010).
文摘Nickel-rich cathode is considered to be the cathode material that can solve the short-range problem of electric vehicles with excellent elec-trochemical properties and low price.However,microcracks,lithium–nickel hybridization,and irreversible phase transitions during cycling limit their commercial applications.These issues should be resolved by modifications.In recent years,it has been favored by researchers to solve a large number of problems by combining multiple modification strate-gies.Therefore,this paper reviews recent developments in various modification techniques for nickel-rich cathode materials that have improved their electrochemical characteristics.The summary of multiple modifications of nickel-rich materials will play a guiding role in future development.
基金This work was supported by the National Natural Science Foundation of China(22279008 and 22109082)the Beijing Institute of Technology Research Fund Program for Young Scholarsthe Tsinghua University Initiative Scientific Research Program。
文摘Dual-atom catalysts(DACs) afford promising potential for oxygen reduction electrocatalysis due to their high atomic efficiency and high intrinsic activity.However,precise construction of dual-atom sites remains a challenge.In this work,a post-modification strategy is proposed to precisely fabricate DACs for oxygen reduction electrocatalysis.Concretely,a secondary metal precursor is introduced to the primary single-atom sites to introduce direct metal-metal interaction,which ensures the formation of desired atom pair structure during the subsequent pyrolysis process and allows for successful construction of DACs.The as-prepared FeCo-NC DAC exhibits superior oxygen reduction electrocatalytic activity with a half-wave potential of 0,91 V vs.reversible hydrogen electrode.Zn-air batteries equipped with the FeCo-NC DAC demonstrate higher peak power density than those with the Pt/C benchmark.More importantly,this post-modification strategy is demonstrated universal to achieve a variety of dual-atom sites.This work presents an effective synthesis methodology for precise construction of catalytic materials and propels their applications in energy-related devices.
基金supported by the National Natural Science Foundation of China (52374299,52304320 and 52204306)the Outstanding Youth Foundation of Hunan Province (2023JJ10044)+1 种基金the Key Project of Hunan Provincial Department of Education (22A0211)the Natural Science Foundation of Hunan Province (2023JJ40014)。
文摘Introducing high-valence Ta element is an essential strategy for addressing the structu ral deterioration of the Ni-rich LiNi_(1-x-y)Co_(x)Mn_(y)O_(2)(NCM)cathode,but the enlarged Li/Ni cation mixing leads to the inferior rate capability originating from the hindered Li~+migration.Note that the non-magnetic Ti~(4+)ion can suppress Li/Ni disorder by removing the magnetic frustration in the transition metal layer.However,it is still challenging to directionally design expected Ta/Ti dual-modification,resulting from the complexity of the elemental distribution and the uncertainty of in-situ formed coating compounds by introducing foreign elements.Herein,a LiTaO_3 grain boundary(GB)coating and bulk Ti-doping have been successfully achieved in LiNi_(0.834)Co_(0.11)Mn_(0.056)O_(2) cathode by thermodynamic guidance,in which the structural formation energy and interfacial binding energy are employed to predict the elemental diffusion discrepancy and thermodynamically stable coating compounds.Thanks to the coupling effect of strengthened structural/interfacial stability and improved Li~+diffusion kinetics by simultaneous bulk/GB engineering,the Ta/Ti-NCM cathode exhibits outstanding capacity retention,reaching 91.1%after 400 cycles at 1 C.This elaborate work contributes valuable insights into rational dual-modification engineering from a thermodynamic perspective for maximizing the electrochemical performances of NCM cathodes.
基金supported by the National Natural Science Foundation of China(22075028)the Beijing Institute of Technology Research Fund Program for Young Scholars(XSQD202108005)。
文摘Al metal possesses ultrahigh theoretical volumetric capacity of 8,040 m Ah cm^(-3),and gravimetric capacity of 2,980 m Ah g^(-1),and thus is highly attractive for electrochemical energy storage.However,it suffers from several issues,such as the dendrite formation,during Al stripping-deposition cycling,which has been verified to account for the short circuit and limited cyclic performance.Herein,we use a facile and applicable method to in-situ reconstruct the Al anode surface with F-Al-O chemical bonds,which could preferentially induce the planar growth of Al along the interface plane,thus leading to the dendrite-free morphology evolution during the cycling.Benefiting from F-Al-O chemical bonds on the surface of Al anodes,long lifespan of symmetric cells can be realized even under 1 m A cm^(-2)and 1 m Ah cm^(-2).Coupling the F-Al anode with graphite-based cathodes,high-voltage dual-ion Al metal batteries can be achieved with long-term cycle stability up to 1,200 cycles(at 0.5 m A cm^(-2)),surpassing the counterparts using pristine Al metal anode.Furthermore,the effectiveness of this surficial modification strategy is also elucidated with the aid of theoretical calculation.This work provides novel insights on low-cost and facile strategies against the Al dendrite growth in aluminum batteries.
基金supported by the Shanghai Institute of Materia Medica,the Chinese Academy of ScienceseNational Natural Science Foundation of China(21772211,21920102003)+4 种基金the Institutes for Drug Discovery and Development,Chinese Academy of Sciences(CASIMM0120163006)the Science and Technology Commission of Shanghai Municipality(17JC1405000,18431907100)the Program of Shanghai Academic Research Leader(19XD1424600)the National Science&Technology Major Project“Key New Drug Creation and Manufacturing Program”,China(2018ZX09711002-006)the China Postdoctoral Science Foundation(2019M662854)
文摘C-C bond activation has emerged as a powerful tool for the construction of complex molecules.Herein,we report a dual ligands relay-promoted transformation of unstrained aryl,alkenyl and alkynyl ketones to the corresponding polyfluoroarenes and nitriles via C-C(=O)bond cleavage and subsequent decarboxylative arylation process.Various polyfluoroarene and nitrile products are obtained in one pot under cyanide-free conditions.The protocol features high atom economy,broad functional group tolerance and excellent heterocyclic compatibility.The late-stage functionalization of the drug and natural product demonstrated the synthetic utility of our protocol.Furthermore,the decisive role of the dual ligands was clarified and the mechanistic rationale including theβ-C elimination as the rate-limiting step was supported by detailed density functional theory(DFT)studies.
基金supported by the Science Technology and Innovation Committee of Shenzhen Municipality(Grant Nos.JCYJ20180507181654823 and JCYJ20170413141047772)the National Natural Science Foundation of China(Grant No.21778044).
文摘Lysine lipoylation plays vital roles in cell metabolism and redox processes.For example,removal of lipoylation will decrease pyruvate dehydrogenase activity and affect the citric acid cycle.Despite the important functions of lysine lipoylation,the mechanisms for the addition and removal of this modification remain largely unexplored.Very few useful chemical tools are available to study the interactions of lysine lipoylation with its regulatory delipoylation proteins.For example,immunoaffinity purification-mass spectrometry is one of such tools,which highly relies on antibody efficiency and purification techniques.Single-step activity based fluorogenic probes developed by our groups and others is also an efficient method to study the deacylation activity.Affinitybased labeling probe using photo-cross-linker is a powerful platform to study the transient and dynamic interactions of peptide ligands with the interacting proteins.Herein,we have designed and synthesized a dual-function probe KTLlip for studying enzymatic delipoylation(eraser)activity and interaction of lysine lipoylation with the eraser at the same time.We show that KTLlip can be used as a useful tool to detect delipoylation as demonstrated by its ability to fluorescently label the eraser activity of recombinant Sirt2.We envision that the probe will help delineate the roles of delipoylation enzyme in biology.
文摘An existing small-scale single-powered baking oven was modified and optimize into a dual-powered oven. The oven was redesigned to accommodate the initially designed firewood heat source and the newly introduced gas heat source. Four heat exchangers (thermal pipes) were introduced to the baking chamber for effective heat and mass transfer during baking of bread dough. The thermal pipes were made of 2 mm thick hollow galvanized steel pipe of 23 mm diameter and 660 mm length. The performance of the oven was evaluated using the standard performance index, which includes baking capacity, baking efficiency and weight loss of the baked bread. The baked bread’s physical properties were determined and analyzed using Duncan multiple range ANOVA test at significant level of <em>p</em> < 0.05. These properties were optimized to determine the generate regression models using 3D model plot. The baking capacity, baking efficiency, weight loss and optimum baking temperature were: 101.9 kg/h, 46.44% (wood-fired);70.34% (gas-fired), 13.5 g (wood-fired);and 25.5 g (gas-fired), 150<span style="white-space:nowrap;">˚</span>C, respectively. The physical properties of baked bread, wood-fired were found to correspond with that of gas-fired oven. The modified oven can be used for the baking of dough at domestic, small and medium scale bakery.
文摘以羟丙基淀粉为原料,对其进行乙酰化处理,制备乙酰化羟丙基复合改性淀粉.研究了乙酰化及羟丙基化反应程度控制、反应温度、反应时间、pH和淀粉乳体积分数对复合改性淀粉取代度的影响.采用中心组合实验设计确立了乙酰化羟丙基淀粉制备的数学模型,通过响应面法优化及预测乙酰化羟丙基淀粉的制备条件.结果表明,最佳工艺条件为羟丙基淀粉的取代度为0.15,淀粉乳体积分数40%,醋酸酐添加量6.65%,pH值为8.30,反应温度25℃,反应时间30 min.