Long-term high temperature in conventional vanadium extraction process would cause particles to be sintered and wrapped, thus reducing extraction efficiency of vanadium. Based on the purpose of directional conversion ...Long-term high temperature in conventional vanadium extraction process would cause particles to be sintered and wrapped, thus reducing extraction efficiency of vanadium. Based on the purpose of directional conversion and process intensification, this work proposed a combination of low temperature sodium roasting and high efficiency selective oxidation leaching in vanadium extraction. The investigation of the reaction mechanism suggested that the structure of vanadium slag was changed by roasting, which also caused the fracture of spinel.The addition of MnO2 promoted the directional oxidation of low-valent vanadium into high valence. It also found that Na2S2O8 could oxidize low-valent vanadium effectively in leaching. The leaching efficiency of vanadium reached 87.74% under the optimum conditions, including a roasting temperature of 650 ℃, a roasting time of 2.0 h, a molar ratio of sodium-to-vanadium of 0.6, a MnO2(roasting additive) dosage of 5 wt% and a Na2S2O8(leaching oxidant) dosage of 5 wt%. This percentage is 7.18% higher than that of direct roasting-andleaching under the same conditions.展开更多
Bi-directional turbines combined with rotary motors may be a feasible option for developing high power thermoacoustic generators with low cost.A general expression for the acoustic characteristics of the bidirectional...Bi-directional turbines combined with rotary motors may be a feasible option for developing high power thermoacoustic generators with low cost.A general expression for the acoustic characteristics of the bidirectional turbine was proposed based on theoretical derivation,which was validated by computational fluid dynamics modeling of an impulse turbine with fixed guide vanes.The structure of the turbine was optimized primarily using steady flow with an efficiency of near 70%(the shaft power divided by the total energy consumed by the turbine).The turbine in the oscillating flow was treated in a lumped-parameter model to extract the acoustic impedance characteristics from the simulation results.The key acoustic impedance characteristic of the turbine was the resistance and inertance due to complex flow condition in the turbine,whereas the capacitance was treated as an adiabatic case because of the large-scale flow channel relative to the heat penetration depth.Correlations for the impedance were obtained from both theoretical predictions and numerical fittings.The good fit of the correlations shows that these characteristics are valid for describing the bi-directional turbine,providing the basis for optimization of the coupling between the thermoacoustic engine and the turbine using quasi-one-dimensional theory in the frequency domain.展开更多
提出单级双向反激式高频环节逆变器电路拓扑及其Buck型有源箝位电路,并对这种逆变器的电路拓扑、电压瞬时值反馈控制策略、稳态原理特性、Buck型有源箝位电路和关键电路参数设计准则等进行深入的分析研究。这种逆变器电路拓扑是由输出...提出单级双向反激式高频环节逆变器电路拓扑及其Buck型有源箝位电路,并对这种逆变器的电路拓扑、电压瞬时值反馈控制策略、稳态原理特性、Buck型有源箝位电路和关键电路参数设计准则等进行深入的分析研究。这种逆变器电路拓扑是由输出低频正、负半周的单极性脉宽调制电流波且共用输入、输出滤波器的两个相同的双向Flyback直流变换器以输入端并联、输出端反向串联构成。采用所提出的电路拓扑,设计并研制成功的750 VA 48 VDC/220 V 50 Hz AC逆变器样机具有电路拓扑简洁、单级功率变换、变换效率高、控制简单、有源箝位性能良好等优良性能。展开更多
基金supported by the National Key Research and Development Program of China,China(2017YFB0603105)the Key Program of Key Program of National Natural Science Foundation of China,China(21636004)。
文摘Long-term high temperature in conventional vanadium extraction process would cause particles to be sintered and wrapped, thus reducing extraction efficiency of vanadium. Based on the purpose of directional conversion and process intensification, this work proposed a combination of low temperature sodium roasting and high efficiency selective oxidation leaching in vanadium extraction. The investigation of the reaction mechanism suggested that the structure of vanadium slag was changed by roasting, which also caused the fracture of spinel.The addition of MnO2 promoted the directional oxidation of low-valent vanadium into high valence. It also found that Na2S2O8 could oxidize low-valent vanadium effectively in leaching. The leaching efficiency of vanadium reached 87.74% under the optimum conditions, including a roasting temperature of 650 ℃, a roasting time of 2.0 h, a molar ratio of sodium-to-vanadium of 0.6, a MnO2(roasting additive) dosage of 5 wt% and a Na2S2O8(leaching oxidant) dosage of 5 wt%. This percentage is 7.18% higher than that of direct roasting-andleaching under the same conditions.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFB-0901403)the National Natural Science Foundation of China(Grant No.51606208).
文摘Bi-directional turbines combined with rotary motors may be a feasible option for developing high power thermoacoustic generators with low cost.A general expression for the acoustic characteristics of the bidirectional turbine was proposed based on theoretical derivation,which was validated by computational fluid dynamics modeling of an impulse turbine with fixed guide vanes.The structure of the turbine was optimized primarily using steady flow with an efficiency of near 70%(the shaft power divided by the total energy consumed by the turbine).The turbine in the oscillating flow was treated in a lumped-parameter model to extract the acoustic impedance characteristics from the simulation results.The key acoustic impedance characteristic of the turbine was the resistance and inertance due to complex flow condition in the turbine,whereas the capacitance was treated as an adiabatic case because of the large-scale flow channel relative to the heat penetration depth.Correlations for the impedance were obtained from both theoretical predictions and numerical fittings.The good fit of the correlations shows that these characteristics are valid for describing the bi-directional turbine,providing the basis for optimization of the coupling between the thermoacoustic engine and the turbine using quasi-one-dimensional theory in the frequency domain.
文摘提出单级双向反激式高频环节逆变器电路拓扑及其Buck型有源箝位电路,并对这种逆变器的电路拓扑、电压瞬时值反馈控制策略、稳态原理特性、Buck型有源箝位电路和关键电路参数设计准则等进行深入的分析研究。这种逆变器电路拓扑是由输出低频正、负半周的单极性脉宽调制电流波且共用输入、输出滤波器的两个相同的双向Flyback直流变换器以输入端并联、输出端反向串联构成。采用所提出的电路拓扑,设计并研制成功的750 VA 48 VDC/220 V 50 Hz AC逆变器样机具有电路拓扑简洁、单级功率变换、变换效率高、控制简单、有源箝位性能良好等优良性能。